Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Nov;83(5):2681–2692. doi: 10.1016/S0006-3495(02)75277-6

Translational diffusion of individual class II MHC membrane proteins in cells.

Marija Vrljic 1, Stefanie Y Nishimura 1, Sophie Brasselet 1, W E Moerner 1, Harden M McConnell 1
PMCID: PMC1302352  PMID: 12414700

Abstract

Single-molecule epifluorescence microscopy was used to observe the translational motion of GPI-linked and native I-E(k) class II MHC membrane proteins in the plasma membrane of CHO cells. The purpose of the study was to look for deviations from Brownian diffusion that might arise from barriers to this motion. Detergent extraction had suggested that these proteins may be confined to lipid microdomains in the plasma membrane. The individual I-E(k) proteins were visualized with a Cy5-labeled peptide that binds to a specific extracytoplasmic site common to both proteins. Single-molecule trajectories were used to compute a radial distribution of displacements, yielding average diffusion coefficients equal to 0.22 (GPI-linked I-E(k)) and 0.18 microm(2)/s (native I-E(k)). The relative diffusion of pairs of proteins was also studied for intermolecular separations in the range 0.3-1.0 microm, to distinguish between free diffusion of a protein molecule and diffusion of proteins restricted to a rapidly diffusing small domain. Both analyses show that motion is predominantly Brownian. This study finds no strong evidence for significant confinement of either GPI-linked or native I-E(k) in the plasma membrane of CHO cells.

Full Text

The Full Text of this article is available as a PDF (393.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson H. A., Hiltbold E. M., Roche P. A. Concentration of MHC class II molecules in lipid rafts facilitates antigen presentation. Nat Immunol. 2000 Aug;1(2):156–162. doi: 10.1038/77842. [DOI] [PubMed] [Google Scholar]
  2. Anderson R. G. The caveolae membrane system. Annu Rev Biochem. 1998;67:199–225. doi: 10.1146/annurev.biochem.67.1.199. [DOI] [PubMed] [Google Scholar]
  3. Berk D. A., Hochmuth R. M. Lateral mobility of integral proteins in red blood cell tethers. Biophys J. 1992 Jan;61(1):9–18. doi: 10.1016/S0006-3495(92)81811-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brown D. A., London E. Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol. 1998;14:111–136. doi: 10.1146/annurev.cellbio.14.1.111. [DOI] [PubMed] [Google Scholar]
  5. Brown D. A., London E. Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem. 2000 Jun 9;275(23):17221–17224. doi: 10.1074/jbc.R000005200. [DOI] [PubMed] [Google Scholar]
  6. Dietrich C., Volovyk Z. N., Levi M., Thompson N. L., Jacobson K. Partitioning of Thy-1, GM1, and cross-linked phospholipid analogs into lipid rafts reconstituted in supported model membrane monolayers. Proc Natl Acad Sci U S A. 2001 Sep 4;98(19):10642–10647. doi: 10.1073/pnas.191168698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dietrich Christian, Yang Bing, Fujiwara Takahiro, Kusumi Akihiro, Jacobson Ken. Relationship of lipid rafts to transient confinement zones detected by single particle tracking. Biophys J. 2002 Jan;82(1 Pt 1):274–284. doi: 10.1016/S0006-3495(02)75393-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Edidin M., Stroynowski I. Differences between the lateral organization of conventional and inositol phospholipid-anchored membrane proteins. A further definition of micrometer scale membrane domains. J Cell Biol. 1991 Mar;112(6):1143–1150. doi: 10.1083/jcb.112.6.1143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Faivre-Sarrailh C., Gauthier F., Denisenko-Nehrbass N., Le Bivic A., Rougon G., Girault J. A. The glycosylphosphatidyl inositol-anchored adhesion molecule F3/contactin is required for surface transport of paranodin/contactin-associated protein (caspr). J Cell Biol. 2000 Apr 17;149(2):491–502. doi: 10.1083/jcb.149.2.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Feder T. J., Brust-Mascher I., Slattery J. P., Baird B., Webb W. W. Constrained diffusion or immobile fraction on cell surfaces: a new interpretation. Biophys J. 1996 Jun;70(6):2767–2773. doi: 10.1016/S0006-3495(96)79846-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ghosh R. N., Webb W. W. Automated detection and tracking of individual and clustered cell surface low density lipoprotein receptor molecules. Biophys J. 1994 May;66(5):1301–1318. doi: 10.1016/S0006-3495(94)80939-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Griffith I. J., Ghogawala Z., Nabavi N., Golan D. E., Myer A., McKean D. J., Glimcher L. H. Cytoplasmic domain affects membrane expression and function of an Ia molecule. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4847–4851. doi: 10.1073/pnas.85.13.4847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hiscox Stephen, Hallett Maurice B., Morgan B. Paul, van den Berg Carmen W. GPI-anchored GFP signals Ca2+ but is homogeneously distributed on the cell surface. Biochem Biophys Res Commun. 2002 May 3;293(2):714–721. doi: 10.1016/S0006-291X(02)00280-2. [DOI] [PubMed] [Google Scholar]
  14. Huby R. D., Dearman R. J., Kimber I. Intracellular phosphotyrosine induction by major histocompatibility complex class II requires co-aggregation with membrane rafts. J Biol Chem. 1999 Aug 6;274(32):22591–22596. doi: 10.1074/jbc.274.32.22591. [DOI] [PubMed] [Google Scholar]
  15. Huby R. D., Weiss A., Ley S. C. Nocodazole inhibits signal transduction by the T cell antigen receptor. J Biol Chem. 1998 May 15;273(20):12024–12031. doi: 10.1074/jbc.273.20.12024. [DOI] [PubMed] [Google Scholar]
  16. Jacobson K., Ishihara A., Inman R. Lateral diffusion of proteins in membranes. Annu Rev Physiol. 1987;49:163–175. doi: 10.1146/annurev.ph.49.030187.001115. [DOI] [PubMed] [Google Scholar]
  17. Kusumi A., Sako Y., Yamamoto M. Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys J. 1993 Nov;65(5):2021–2040. doi: 10.1016/S0006-3495(93)81253-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Marshall K. W., Wilson K. J., Liang J., Woods A., Zaller D., Rothbard J. B. Prediction of peptide affinity to HLA DRB1*0401. J Immunol. 1995 Jun 1;154(11):5927–5933. [PubMed] [Google Scholar]
  19. Munnelly H. M., Brady C. J., Hagen G. M., Wade W. F., Roess D. A., Barisas B. G. Rotational and lateral dynamics of I-A(k) molecules expressing cytoplasmic truncations. Int Immunol. 2000 Sep;12(9):1319–1328. doi: 10.1093/intimm/12.9.1319. [DOI] [PubMed] [Google Scholar]
  20. Poo M., Cone R. A. Lateral diffusion of rhodopsin in the photoreceptor membrane. Nature. 1974 Feb 15;247(5441):438–441. doi: 10.1038/247438a0. [DOI] [PubMed] [Google Scholar]
  21. Pralle A., Keller P., Florin E. L., Simons K., Hörber J. K. Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J Cell Biol. 2000 Mar 6;148(5):997–1008. doi: 10.1083/jcb.148.5.997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Qian H., Sheetz M. P., Elson E. L. Single particle tracking. Analysis of diffusion and flow in two-dimensional systems. Biophys J. 1991 Oct;60(4):910–921. doi: 10.1016/S0006-3495(91)82125-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rabinowitz J. D., Vrljic M., Kasson P. M., Liang M. N., Busch R., Boniface J. J., Davis M. M., McConnell H. M. Formation of a highly peptide-receptive state of class II MHC. Immunity. 1998 Nov;9(5):699–709. doi: 10.1016/s1074-7613(00)80667-6. [DOI] [PubMed] [Google Scholar]
  24. Reay P. A., Kantor R. M., Davis M. M. Use of global amino acid replacements to define the requirements for MHC binding and T cell recognition of moth cytochrome c (93-103). J Immunol. 1994 Apr 15;152(8):3946–3957. [PubMed] [Google Scholar]
  25. Reay P. A., Wettstein D. A., Davis M. M. pH dependence and exchange of high and low responder peptides binding to a class II MHC molecule. EMBO J. 1992 Aug;11(8):2829–2839. doi: 10.1002/j.1460-2075.1992.tb05350.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rotsch C., Radmacher M. Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study. Biophys J. 2000 Jan;78(1):520–535. doi: 10.1016/S0006-3495(00)76614-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sako Y., Kusumi A. Compartmentalized structure of the plasma membrane for receptor movements as revealed by a nanometer-level motion analysis. J Cell Biol. 1994 Jun;125(6):1251–1264. doi: 10.1083/jcb.125.6.1251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Saxton M. J. Anomalous diffusion due to obstacles: a Monte Carlo study. Biophys J. 1994 Feb;66(2 Pt 1):394–401. doi: 10.1016/s0006-3495(94)80789-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Saxton M. J., Jacobson K. Single-particle tracking: applications to membrane dynamics. Annu Rev Biophys Biomol Struct. 1997;26:373–399. doi: 10.1146/annurev.biophys.26.1.373. [DOI] [PubMed] [Google Scholar]
  30. Saxton M. J. Lateral diffusion in an archipelago. Single-particle diffusion. Biophys J. 1993 Jun;64(6):1766–1780. doi: 10.1016/S0006-3495(93)81548-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Saxton M. J. Single-particle tracking: effects of corrals. Biophys J. 1995 Aug;69(2):389–398. doi: 10.1016/S0006-3495(95)79911-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Saxton M. J. Single-particle tracking: the distribution of diffusion coefficients. Biophys J. 1997 Apr;72(4):1744–1753. doi: 10.1016/S0006-3495(97)78820-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Schmitt L., Boniface J. J., Davis M. M., McConnell H. M. Kinetic isomers of a class II MHC-peptide complex. Biochemistry. 1998 Dec 15;37(50):17371–17380. doi: 10.1021/bi9815593. [DOI] [PubMed] [Google Scholar]
  34. Schütz G. J., Kada G., Pastushenko V. P., Schindler H. Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. EMBO J. 2000 Mar 1;19(5):892–901. doi: 10.1093/emboj/19.5.892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Schütz G. J., Schindler H., Schmidt T. Single-molecule microscopy on model membranes reveals anomalous diffusion. Biophys J. 1997 Aug;73(2):1073–1080. doi: 10.1016/S0006-3495(97)78139-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sheets E. D., Lee G. M., Simson R., Jacobson K. Transient confinement of a glycosylphosphatidylinositol-anchored protein in the plasma membrane. Biochemistry. 1997 Oct 14;36(41):12449–12458. doi: 10.1021/bi9710939. [DOI] [PubMed] [Google Scholar]
  37. Simons K., Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000 Oct;1(1):31–39. doi: 10.1038/35036052. [DOI] [PubMed] [Google Scholar]
  38. Simson R., Sheets E. D., Jacobson K. Detection of temporary lateral confinement of membrane proteins using single-particle tracking analysis. Biophys J. 1995 Sep;69(3):989–993. doi: 10.1016/S0006-3495(95)79972-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Simson R., Yang B., Moore S. E., Doherty P., Walsh F. S., Jacobson K. A. Structural mosaicism on the submicron scale in the plasma membrane. Biophys J. 1998 Jan;74(1):297–308. doi: 10.1016/S0006-3495(98)77787-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Smith P. R., Morrison I. E., Wilson K. M., Fernández N., Cherry R. J. Anomalous diffusion of major histocompatibility complex class I molecules on HeLa cells determined by single particle tracking. Biophys J. 1999 Jun;76(6):3331–3344. doi: 10.1016/S0006-3495(99)77486-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Stevenson B. R., Begg D. A. Concentration-dependent effects of cytochalasin D on tight junctions and actin filaments in MDCK epithelial cells. J Cell Sci. 1994 Mar;107(Pt 3):367–375. doi: 10.1242/jcs.107.3.367. [DOI] [PubMed] [Google Scholar]
  42. Suzuki K., Sheetz M. P. Binding of cross-linked glycosylphosphatidylinositol-anchored proteins to discrete actin-associated sites and cholesterol-dependent domains. Biophys J. 2001 Oct;81(4):2181–2189. doi: 10.1016/S0006-3495(01)75866-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Thomas J. L., Holowka D., Baird B., Webb W. W. Large-scale co-aggregation of fluorescent lipid probes with cell surface proteins. J Cell Biol. 1994 May;125(4):795–802. doi: 10.1083/jcb.125.4.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Vacchino J. F., McConnell H. M. Peptide binding to active class II MHC protein on the cell surface. J Immunol. 2001 Jun 1;166(11):6680–6685. doi: 10.4049/jimmunol.166.11.6680. [DOI] [PubMed] [Google Scholar]
  45. Varma R., Mayor S. GPI-anchored proteins are organized in submicron domains at the cell surface. Nature. 1998 Aug 20;394(6695):798–801. doi: 10.1038/29563. [DOI] [PubMed] [Google Scholar]
  46. Wade W. F., Freed J. H., Edidin M. Translational diffusion of class II major histocompatibility complex molecules is constrained by their cytoplasmic domains. J Cell Biol. 1989 Dec;109(6 Pt 2):3325–3331. doi: 10.1083/jcb.109.6.3325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Weiss S. Fluorescence spectroscopy of single biomolecules. Science. 1999 Mar 12;283(5408):1676–1683. doi: 10.1126/science.283.5408.1676. [DOI] [PubMed] [Google Scholar]
  48. Wettstein D. A., Boniface J. J., Reay P. A., Schild H., Davis M. M. Expression of a class II major histocompatibility complex (MHC) heterodimer in a lipid-linked form with enhanced peptide/soluble MHC complex formation at low pH. J Exp Med. 1991 Jul 1;174(1):219–228. doi: 10.1084/jem.174.1.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Wilson K. M., Morrison I. E., Smith P. R., Fernandez N., Cherry R. J. Single particle tracking of cell-surface HLA-DR molecules using R-phycoerythrin labeled monoclonal antibodies and fluorescence digital imaging. J Cell Sci. 1996 Aug;109(Pt 8):2101–2109. doi: 10.1242/jcs.109.8.2101. [DOI] [PubMed] [Google Scholar]
  50. Zhang F., Crise B., Su B., Hou Y., Rose J. K., Bothwell A., Jacobson K. Lateral diffusion of membrane-spanning and glycosylphosphatidylinositol-linked proteins: toward establishing rules governing the lateral mobility of membrane proteins. J Cell Biol. 1991 Oct;115(1):75–84. doi: 10.1083/jcb.115.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES