Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Nov;83(5):2705–2715. doi: 10.1016/S0006-3495(02)75280-6

Mechanics of F-actin characterized with microfabricated cantilevers.

Xiumei Liu 1, Gerald H Pollack 1
PMCID: PMC1302355  PMID: 12414703

Abstract

In this report we characterized the longitudinal elasticity of single actin filaments manipulated by novel silicon-nitride microfabricated levers. Single actin filaments were stretched from zero tension to maximal physiological tension, P(0). The obtained length-tension relation was nonlinear in the low-tension range (0-50 pN) with a resultant strain of approximately 0.4-0.6% and then became linear at moderate to high tensions (approximately 50-230 pN). In this region, the stretching stiffness of a single rhodamine-phalloidin-labeled, 1-microm-long F-actin is 34.5 +/- 3.5 pN/nm. Such a length-tension relation could be characterized by an entropic-enthalpic worm-like chain model, which ascribes most of the energy consumed in the nonlinear portion to overcoming thermal undulations arising from the filament's interaction with surrounding solution and the linear portion to the intrinsic stretching elasticity. By fitting the experimental data with such a worm-like chain model, an estimation of persistence length of approximately 8.75 microm was derived. These results suggest that F-actin is more compliant than previously thought and that thin filament compliance may account for a substantial fraction of the sarcomere's elasticity.

Full Text

The Full Text of this article is available as a PDF (302.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adami R., Choquet D., Grazi E. Rhodamine phalloidin F-actin: critical concentration versus tensile strength. Eur J Biochem. 1999 Jul;263(1):270–275. doi: 10.1046/j.1432-1327.1999.00501.x. [DOI] [PubMed] [Google Scholar]
  2. Bordas J., Svensson A., Rothery M., Lowy J., Diakun G. P., Boesecke P. Extensibility and symmetry of actin filaments in contracting muscles. Biophys J. 1999 Dec;77(6):3197–3207. doi: 10.1016/S0006-3495(99)77150-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bustamante C., Marko J. F., Siggia E. D., Smith S. Entropic elasticity of lambda-phage DNA. Science. 1994 Sep 9;265(5178):1599–1600. doi: 10.1126/science.8079175. [DOI] [PubMed] [Google Scholar]
  4. Dunaway Dwayne, Fauver Mark, Pollack Gerald. Direct measurement of single synthetic vertebrate thick filament elasticity using nanofabricated cantilevers. Biophys J. 2002 Jun;82(6):3128–3133. doi: 10.1016/S0006-3495(02)75654-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dupuis D. E., Guilford W. H., Wu J., Warshaw D. M. Actin filament mechanics in the laser trap. J Muscle Res Cell Motil. 1997 Feb;18(1):17–30. doi: 10.1023/a:1018672631256. [DOI] [PubMed] [Google Scholar]
  6. Fauver M. E., Dunaway D. L., Lilienfeld D. H., Craighead H. G., Pollack G. H. Microfabricated cantilevers for measurement of subcellular and molecular forces. IEEE Trans Biomed Eng. 1998 Jul;45(7):891–898. doi: 10.1109/10.686797. [DOI] [PubMed] [Google Scholar]
  7. Ford L. E., Huxley A. F., Simmons R. M. Tension responses to sudden length change in stimulated frog muscle fibres near slack length. J Physiol. 1977 Jul;269(2):441–515. doi: 10.1113/jphysiol.1977.sp011911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ford L. E., Huxley A. F., Simmons R. M. The relation between stiffness and filament overlap in stimulated frog muscle fibres. J Physiol. 1981 Feb;311:219–249. doi: 10.1113/jphysiol.1981.sp013582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fujime S., Takasaki-Ohsita M., Ishiwata S. Dynamic light-scattering study of muscle F-actin. II. Biophys Chem. 1987 Sep;27(3):211–224. doi: 10.1016/0301-4622(87)80060-1. [DOI] [PubMed] [Google Scholar]
  10. Gittes F., Mickey B., Nettleton J., Howard J. Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J Cell Biol. 1993 Feb;120(4):923–934. doi: 10.1083/jcb.120.4.923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Goldmann W. H. Binding of tropomyosin-troponin to actin increases filament bending stiffness. Biochem Biophys Res Commun. 2000 Oct 5;276(3):1225–1228. doi: 10.1006/bbrc.2000.3608. [DOI] [PubMed] [Google Scholar]
  12. Higuchi H., Yanagida T., Goldman Y. E. Compliance of thin filaments in skinned fibers of rabbit skeletal muscle. Biophys J. 1995 Sep;69(3):1000–1010. doi: 10.1016/S0006-3495(95)79975-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Huxley H. E., Stewart A., Sosa H., Irving T. X-ray diffraction measurements of the extensibility of actin and myosin filaments in contracting muscle. Biophys J. 1994 Dec;67(6):2411–2421. doi: 10.1016/S0006-3495(94)80728-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kellermayer M. S., Smith S. B., Granzier H. L., Bustamante C. Folding-unfolding transitions in single titin molecules characterized with laser tweezers. Science. 1997 May 16;276(5315):1112–1116. doi: 10.1126/science.276.5315.1112. [DOI] [PubMed] [Google Scholar]
  15. Kojima H., Ishijima A., Yanagida T. Direct measurement of stiffness of single actin filaments with and without tropomyosin by in vitro nanomanipulation. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12962–12966. doi: 10.1073/pnas.91.26.12962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Käs J., Strey H., Sackmann E. Direct imaging of reptation for semiflexible actin filaments. Nature. 1994 Mar 17;368(6468):226–229. doi: 10.1038/368226a0. [DOI] [PubMed] [Google Scholar]
  17. Neumann T., Fauver M., Pollack G. H. Elastic properties of isolated thick filaments measured by nanofabricated cantilevers. Biophys J. 1998 Aug;75(2):938–947. doi: 10.1016/S0006-3495(98)77582-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Oosawa F. Actin-actin bond strength and the conformational change of F-actin. Biorheology. 1977;14(1):11–19. doi: 10.3233/bir-1977-14102. [DOI] [PubMed] [Google Scholar]
  19. Oosawa F., Maeda Y., Fujime S., Ishiwata S., Yanagida T., Taniguchi M. Dynamic characteristics of F-actin and thin filaments in vivo and in vitro. J Mechanochem Cell Motil. 1977 Mar;4(1):63–78. [PubMed] [Google Scholar]
  20. Oosawa F. The flexibility of F-actin. Biophys Chem. 1980 Jun;11(3-4):443–446. doi: 10.1016/0301-4622(80)87021-9. [DOI] [PubMed] [Google Scholar]
  21. Ott A, Magnasco M, Simon A, Libchaber A. Measurement of the persistence length of polymerized actin using fluorescence microscopy. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1993 Sep;48(3):R1642–R1645. doi: 10.1103/physreve.48.r1642. [DOI] [PubMed] [Google Scholar]
  22. Pardee J. D., Spudich J. A. Purification of muscle actin. Methods Enzymol. 1982;85(Pt B):164–181. doi: 10.1016/0076-6879(82)85020-9. [DOI] [PubMed] [Google Scholar]
  23. Schutt C. E., Lindberg U. Actin as the generator of tension during muscle contraction. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):319–323. doi: 10.1073/pnas.89.1.319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Takebayashi T., Morita Y., Oosawa F. Electronmicroscopic investigation of the flexibility of F-actin. Biochim Biophys Acta. 1977 Jun 24;492(2):357–363. doi: 10.1016/0005-2795(77)90086-1. [DOI] [PubMed] [Google Scholar]
  25. Takezawa Y., Sugimoto Y., Wakabayashi K. Extensibility of the actin and myosin filaments in various states of skeletal muscle as studied by X-ray diffraction. Adv Exp Med Biol. 1998;453:309–317. doi: 10.1007/978-1-4684-6039-1_36. [DOI] [PubMed] [Google Scholar]
  26. Wakabayashi K., Sugimoto Y., Tanaka H., Ueno Y., Takezawa Y., Amemiya Y. X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction. Biophys J. 1994 Dec;67(6):2422–2435. doi: 10.1016/S0006-3495(94)80729-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wang M. D., Yin H., Landick R., Gelles J., Block S. M. Stretching DNA with optical tweezers. Biophys J. 1997 Mar;72(3):1335–1346. doi: 10.1016/S0006-3495(97)78780-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Yanagida T., Nakase M., Nishiyama K., Oosawa F. Direct observation of motion of single F-actin filaments in the presence of myosin. Nature. 1984 Jan 5;307(5946):58–60. doi: 10.1038/307058a0. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES