Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Nov;83(5):2726–2732. doi: 10.1016/S0006-3495(02)75282-X

Thin filament regulation and ionic interactions between the N-terminal region in actin and troponin.

Wenise W Wong 1, Jack H Gerson 1, Peter A Rubenstein 1, Emil Reisler 1
PMCID: PMC1302357  PMID: 12414705

Abstract

The N-terminal region in actin has been shown to interact with both myosin and troponin (Tn) during the cross-bridge cycle and in regulation. To study the role of this region in regulation, we used yeast actin mutants with increased and decreased numbers of acidic residues. The mutants included D24A/D25A, with Asp(24) and Asp(25) replaced with alanines; DNEQ, with the substitution of Asp(2) and Glu(4) with their amide analogs; and 4Ac, with Glu(3) and Asp(4) inserted in lieu of Ser(3). In the in vitro motility assay, using reconstituted regulated thin filaments, the sliding speeds of DNEQ, D24A/D25A, and 4Ac were similar at all pCa values. Thus, Ca(2+)-sensitivity of the thin filaments and the inhibitory function of TnI appear to be insensitive to changes in charge (+/-2) at the N-terminus of actin, suggesting little, if any, role of that actin region in regulation. A Ca(2+)-independent conformational change in that region was detected upon troponin binding to actin-Tm via an increase in the fluorescence of a pyrene probe attached to another yeast actin mutant that we used (Cys(1)).

Full Text

The Full Text of this article is available as a PDF (124.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chen X., Peng J., Pedram M., Swenson C. A., Rubenstein P. A. The effect of the S14A mutation on the conformation and thermostability of Saccharomyces cerevisiae G-actin and its interaction with adenine nucleotides. J Biol Chem. 1995 May 12;270(19):11415–11423. doi: 10.1074/jbc.270.19.11415. [DOI] [PubMed] [Google Scholar]
  2. Cook R. K., Blake W. T., Rubenstein P. A. Removal of the amino-terminal acidic residues of yeast actin. Studies in vitro and in vivo. J Biol Chem. 1992 May 5;267(13):9430–9436. [PubMed] [Google Scholar]
  3. Cook R. K., Root D., Miller C., Reisler E., Rubenstein P. A. Enhanced stimulation of myosin subfragment 1 ATPase activity by addition of negatively charged residues to the yeast actin NH2 terminus. J Biol Chem. 1993 Feb 5;268(4):2410–2415. [PubMed] [Google Scholar]
  4. Ebashi S., Endo M., Otsuki I. Control of muscle contraction. Q Rev Biophys. 1969 Nov;2(4):351–384. doi: 10.1017/s0033583500001190. [DOI] [PubMed] [Google Scholar]
  5. Farah C. S., Reinach F. C. The troponin complex and regulation of muscle contraction. FASEB J. 1995 Jun;9(9):755–767. doi: 10.1096/fasebj.9.9.7601340. [DOI] [PubMed] [Google Scholar]
  6. Geeves M. A., Chai M., Lehrer S. S. Inhibition of actin-myosin subfragment 1 ATPase activity by troponin I and IC: relationship to the thin filament states of muscle. Biochemistry. 2000 Aug 8;39(31):9345–9350. doi: 10.1021/bi0002232. [DOI] [PubMed] [Google Scholar]
  7. Geeves M. A., Lehrer S. S. Dynamics of the muscle thin filament regulatory switch: the size of the cooperative unit. Biophys J. 1994 Jul;67(1):273–282. doi: 10.1016/S0006-3495(94)80478-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gergely J., Grabarek Z., Leavis P. C., Strasburg G., Tao T., Wang C. L. Transmission of the Ca2+-regulatory signal in skeletal muscle thin filaments. Adv Exp Med Biol. 1988;226:155–164. [PubMed] [Google Scholar]
  9. Gerson J. H., Bobkova E., Homsher E., Reisler E. Role of residues 311/312 in actin-tropomyosin interaction. In vitro motility study using yeast actin mutant e311a/r312a. J Biol Chem. 1999 Jun 18;274(25):17545–17550. doi: 10.1074/jbc.274.25.17545. [DOI] [PubMed] [Google Scholar]
  10. Godfrey J. E., Harrington W. F. Self-association in the myosin system at high ionic strength. I. Sensitivity of the interaction to pH and ionic environment. Biochemistry. 1970 Feb 17;9(4):886–893. doi: 10.1021/bi00806a025. [DOI] [PubMed] [Google Scholar]
  11. Hansen J. E., Marner J., Pavlov D., Rubenstein P. A., Reisler E. Structural transition at actin's N-terminus in the actomyosin cross-bridge cycle. Biochemistry. 2000 Feb 22;39(7):1792–1799. doi: 10.1021/bi991873c. [DOI] [PubMed] [Google Scholar]
  12. Homsher E., Kim B., Bobkova A., Tobacman L. S. Calcium regulation of thin filament movement in an in vitro motility assay. Biophys J. 1996 Apr;70(4):1881–1892. doi: 10.1016/S0006-3495(96)79753-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Homsher E., Lee D. M., Morris C., Pavlov D., Tobacman L. S. Regulation of force and unloaded sliding speed in single thin filaments: effects of regulatory proteins and calcium. J Physiol. 2000 Apr 1;524(Pt 1):233–243. doi: 10.1111/j.1469-7793.2000.00233.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Homsher E., Wang F., Sellers J. R. Factors affecting movement of F-actin filaments propelled by skeletal muscle heavy meromyosin. Am J Physiol. 1992 Mar;262(3 Pt 1):C714–C723. doi: 10.1152/ajpcell.1992.262.3.C714. [DOI] [PubMed] [Google Scholar]
  15. Kabsch W., Mannherz H. G., Suck D., Pai E. F., Holmes K. C. Atomic structure of the actin:DNase I complex. Nature. 1990 Sep 6;347(6288):37–44. doi: 10.1038/347037a0. [DOI] [PubMed] [Google Scholar]
  16. Kim E., Miller C. J., Reisler E. Polymerization and in vitro motility properties of yeast actin: a comparison with rabbit skeletal alpha-actin. Biochemistry. 1996 Dec 24;35(51):16566–16572. doi: 10.1021/bi9623892. [DOI] [PubMed] [Google Scholar]
  17. Korman V. L., Hatch V., Dixon K. Y., Craig R., Lehman W., Tobacman L. S. An actin subdomain 2 mutation that impairs thin filament regulation by troponin and tropomyosin. J Biol Chem. 2000 Jul 21;275(29):22470–22478. doi: 10.1074/jbc.M002939200. [DOI] [PubMed] [Google Scholar]
  18. Korman V. L., Tobacman L. S. Mutations in actin subdomain 3 that impair thin filament regulation by troponin and tropomyosin. J Biol Chem. 1999 Aug 6;274(32):22191–22196. doi: 10.1074/jbc.274.32.22191. [DOI] [PubMed] [Google Scholar]
  19. Leavis P. C., Gergely J. Thin filament proteins and thin filament-linked regulation of vertebrate muscle contraction. CRC Crit Rev Biochem. 1984;16(3):235–305. doi: 10.3109/10409238409108717. [DOI] [PubMed] [Google Scholar]
  20. Lehman W., Craig R., Vibert P. Ca(2+)-induced tropomyosin movement in Limulus thin filaments revealed by three-dimensional reconstruction. Nature. 1994 Mar 3;368(6466):65–67. doi: 10.1038/368065a0. [DOI] [PubMed] [Google Scholar]
  21. Lehman W., Rosol M., Tobacman L. S., Craig R. Troponin organization on relaxed and activated thin filaments revealed by electron microscopy and three-dimensional reconstruction. J Mol Biol. 2001 Mar 30;307(3):739–744. doi: 10.1006/jmbi.2001.4514. [DOI] [PubMed] [Google Scholar]
  22. Lehrer S. S., Geeves M. A. The muscle thin filament as a classical cooperative/allosteric regulatory system. J Mol Biol. 1998 Apr 17;277(5):1081–1089. doi: 10.1006/jmbi.1998.1654. [DOI] [PubMed] [Google Scholar]
  23. Levine B. A., Moir A. J., Perry S. V. The interaction of troponin-I with the N-terminal region of actin. Eur J Biochem. 1988 Mar 1;172(2):389–397. doi: 10.1111/j.1432-1033.1988.tb13899.x. [DOI] [PubMed] [Google Scholar]
  24. McKillop D. F., Geeves M. A. Regulation of the interaction between actin and myosin subfragment 1: evidence for three states of the thin filament. Biophys J. 1993 Aug;65(2):693–701. doi: 10.1016/S0006-3495(93)81110-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Miller C. J., Reisler E. Role of charged amino acid pairs in subdomain-1 of actin in interactions with myosin. Biochemistry. 1995 Feb 28;34(8):2694–2700. doi: 10.1021/bi00008a037. [DOI] [PubMed] [Google Scholar]
  26. Miller C. J., Wong W. W., Bobkova E., Rubenstein P. A., Reisler E. Mutational analysis of the role of the N terminus of actin in actomyosin interactions. Comparison with other mutant actins and implications for the cross-bridge cycle. Biochemistry. 1996 Dec 24;35(51):16557–16565. doi: 10.1021/bi962388+. [DOI] [PubMed] [Google Scholar]
  27. Morris C. A., Tobacman L. S., Homsher E. Modulation of contractile activation in skeletal muscle by a calcium-insensitive troponin C mutant. J Biol Chem. 2001 Mar 21;276(23):20245–20251. doi: 10.1074/jbc.M007371200. [DOI] [PubMed] [Google Scholar]
  28. Narita A., Yasunaga T., Ishikawa T., Mayanagi K., Wakabayashi T. Ca(2+)-induced switching of troponin and tropomyosin on actin filaments as revealed by electron cryo-microscopy. J Mol Biol. 2001 Apr 27;308(2):241–261. doi: 10.1006/jmbi.2001.4598. [DOI] [PubMed] [Google Scholar]
  29. Ng R., Abelson J. Isolation and sequence of the gene for actin in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1980 Jul;77(7):3912–3916. doi: 10.1073/pnas.77.7.3912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Perry S. V. Troponin I: inhibitor or facilitator. Mol Cell Biochem. 1999 Jan;190(1-2):9–32. [PubMed] [Google Scholar]
  31. Potter J. D., Gergely J. Troponin, tropomyosin, and actin interactions in the Ca2+ regulation of muscle contraction. Biochemistry. 1974 Jun 18;13(13):2697–2703. doi: 10.1021/bi00710a007. [DOI] [PubMed] [Google Scholar]
  32. Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
  33. Squire J. M., Morris E. P. A new look at thin filament regulation in vertebrate skeletal muscle. FASEB J. 1998 Jul;12(10):761–771. doi: 10.1096/fasebj.12.10.761. [DOI] [PubMed] [Google Scholar]
  34. Talbot J. A., Hodges R. S. Synthetic studies on the inhibitory region of rabbit skeletal troponin I. Relationship of amino acid sequence to biological activity. J Biol Chem. 1981 Mar 25;256(6):2798–2802. [PubMed] [Google Scholar]
  35. Tao T., Gong B. J., Leavis P. C. Calcium-induced movement of troponin-I relative to actin in skeletal muscle thin filaments. Science. 1990 Mar 16;247(4948):1339–1341. doi: 10.1126/science.2138356. [DOI] [PubMed] [Google Scholar]
  36. Tobacman L. S. Thin filament-mediated regulation of cardiac contraction. Annu Rev Physiol. 1996;58:447–481. doi: 10.1146/annurev.ph.58.030196.002311. [DOI] [PubMed] [Google Scholar]
  37. Tripet B., Van Eyk J. E., Hodges R. S. Mapping of a second actin-tropomyosin and a second troponin C binding site within the C terminus of troponin I, and their importance in the Ca2+-dependent regulation of muscle contraction. J Mol Biol. 1997 Sep 5;271(5):728–750. doi: 10.1006/jmbi.1997.1200. [DOI] [PubMed] [Google Scholar]
  38. Van Eyk J. E., Hodges R. S. The biological importance of each amino acid residue of the troponin I inhibitory sequence 104-115 in the interaction with troponin C and tropomyosin-actin. J Biol Chem. 1988 Feb 5;263(4):1726–1732. [PubMed] [Google Scholar]
  39. Weeds A. G., Pope B. Studies on the chymotryptic digestion of myosin. Effects of divalent cations on proteolytic susceptibility. J Mol Biol. 1977 Apr;111(2):129–157. doi: 10.1016/s0022-2836(77)80119-8. [DOI] [PubMed] [Google Scholar]
  40. Wertman K. F., Drubin D. G., Botstein D. Systematic mutational analysis of the yeast ACT1 gene. Genetics. 1992 Oct;132(2):337–350. doi: 10.1093/genetics/132.2.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wong W. W., Doyle T. C., Reisler E. Nonspecific weak actomyosin interactions: relocation of charged residues in subdomain 1 of actin does not alter actomyosin function. Biochemistry. 1999 Jan 26;38(4):1365–1370. doi: 10.1021/bi982467g. [DOI] [PubMed] [Google Scholar]
  42. Yao X., Rubenstein P. A. F-actin-like ATPase activity in a polymerization-defective mutant yeast actin (V266G/L267G). J Biol Chem. 2001 Apr 27;276(27):25598–25604. doi: 10.1074/jbc.M011797200. [DOI] [PubMed] [Google Scholar]
  43. Zhou X., Morris E. P., Lehrer S. S. Binding of troponin I and the troponin I-troponin C complex to actin-tropomyosin. Dissociation by myosin subfragment 1. Biochemistry. 2000 Feb 8;39(5):1128–1132. doi: 10.1021/bi992327m. [DOI] [PubMed] [Google Scholar]
  44. Zot A. S., Potter J. D. Structural aspects of troponin-tropomyosin regulation of skeletal muscle contraction. Annu Rev Biophys Biophys Chem. 1987;16:535–559. doi: 10.1146/annurev.bb.16.060187.002535. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES