Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Nov;83(5):2754–2766. doi: 10.1016/S0006-3495(02)75285-5

Structure and interactions of the carboxyl terminus of striated muscle alpha-tropomyosin: it is important to be flexible.

Norma J Greenfield 1, Thomas Palm 1, Sarah E Hitchcock-DeGregori 1
PMCID: PMC1302360  PMID: 12414708

Abstract

Tropomyosin (TM) binds to and regulates the actin filament. We used circular dichroism and heteronuclear NMR to investigate the secondary structure and interactions of the C terminus of striated muscle alpha-TM, a major functional determinant, using a model peptide, TM9a(251-284). The (1)H(alpha) and (13)C(alpha) chemical shift displacements show that residues 252 to 277 are alpha-helical but residues 278 to 284 are nonhelical and mobile. The (1)H(N) and (13)C' displacements suggest that residues 257 to 269 form a coiled coil. Formation of an "overlap" binary complex with a 33-residue N-terminal chimeric peptide containing residues 1 to 14 of alpha-TM perturbs the (1)H(N) and (15)N resonances of residues 274 to 284. Addition of a fragment of troponin T, TnT(70-170), to the binary complex perturbs most of the (1)H(N)-(15)N cross-peaks. In addition, there are many new cross-peaks, showing that the binding is asymmetric. Q263, in a proposed troponin T binding site, shows two sets of side-chain (15)N-(1)H cross-peaks, indicating conformational flexibility. The conformational equilibrium of the side chain changes upon formation of the binary and ternary complexes. Replacing Q263 with leucine greatly increases the stability of TM9a(251-284) and reduces its ability to form the binary and ternary complexes, showing that conformational flexibility is crucial for the binding functions of the C terminus.

Full Text

The Full Text of this article is available as a PDF (627.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Betts M. J., Sternberg M. J. An analysis of conformational changes on protein-protein association: implications for predictive docking. Protein Eng. 1999 Apr;12(4):271–283. doi: 10.1093/protein/12.4.271. [DOI] [PubMed] [Google Scholar]
  2. Brown J. H., Kim K. H., Jun G., Greenfield N. J., Dominguez R., Volkmann N., Hitchcock-DeGregori S. E., Cohen C. Deciphering the design of the tropomyosin molecule. Proc Natl Acad Sci U S A. 2001 Jul 3;98(15):8496–8501. doi: 10.1073/pnas.131219198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Böhm G., Muhr R., Jaenicke R. Quantitative analysis of protein far UV circular dichroism spectra by neural networks. Protein Eng. 1992 Apr;5(3):191–195. doi: 10.1093/protein/5.3.191. [DOI] [PubMed] [Google Scholar]
  4. Camacho Carlos J., Vajda Sandor. Protein-protein association kinetics and protein docking. Curr Opin Struct Biol. 2002 Feb;12(1):36–40. doi: 10.1016/s0959-440x(02)00286-5. [DOI] [PubMed] [Google Scholar]
  5. Cho Y. J., Hitchcock-DeGregori S. E. Relationship between alternatively spliced exons and functional domains in tropomyosin. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10153–10157. doi: 10.1073/pnas.88.22.10153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cho Y. J., Liu J., Hitchcock-DeGregori S. E. The amino terminus of muscle tropomyosin is a major determinant for function. J Biol Chem. 1990 Jan 5;265(1):538–545. [PubMed] [Google Scholar]
  7. Chou P. Y., Fasman G. D. Conformational parameters for amino acids in helical, beta-sheet, and random coil regions calculated from proteins. Biochemistry. 1974 Jan 15;13(2):211–222. doi: 10.1021/bi00699a001. [DOI] [PubMed] [Google Scholar]
  8. Cohen C. Good times with don caspar. Biophys J. 1998 Jan;74(1):532–533. doi: 10.1016/S0006-3495(98)77810-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dabrowska R., Nowak E., Drabikowski W. Some functional properties of nonpolymerizable and polymerizable tropomyosin. J Muscle Res Cell Motil. 1983 Apr;4(2):143–161. doi: 10.1007/BF00712027. [DOI] [PubMed] [Google Scholar]
  10. Deprez P., Doss-Pepe E., Brodsky B., Inestrosa N. C. Interaction of the collagen-like tail of asymmetric acetylcholinesterase with heparin depends on triple-helical conformation, sequence and stability. Biochem J. 2000 Aug 15;350(Pt 1):283–290. [PMC free article] [PubMed] [Google Scholar]
  11. Doss-Pepe E., Deprez P., Inestrosa N. C., Brodsky B. Interaction of collagen-like peptide models of asymmetric acetylcholinesterase with glycosaminoglycans: spectroscopic studies of conformational changes and stability. Biochemistry. 2000 Dec 5;39(48):14884–14892. doi: 10.1021/bi001108u. [DOI] [PubMed] [Google Scholar]
  12. Feng W., Rios C. B., Montelione G. T. Phase labeling of C-H and C-C spin-system topologies: application in PFG-HACANH and PFG-HACA(CO)NH triple-resonance experiments for determining backbone resonance assignments in proteins. J Biomol NMR. 1996 Jul;8(1):98–104. doi: 10.1007/BF00198144. [DOI] [PubMed] [Google Scholar]
  13. Gans P. J., Lyu P. C., Manning M. C., Woody R. W., Kallenbach N. R. The helix-coil transition in heterogeneous peptides with specific side-chain interactions: theory and comparison with CD spectral data. Biopolymers. 1991 Nov;31(13):1605–1614. doi: 10.1002/bip.360311315. [DOI] [PubMed] [Google Scholar]
  14. Gergely J. Molecular aspects of muscle contraction and regulation. Basic Res Cardiol. 1977 Mar-Jun;72(2-3):109–117. doi: 10.1007/BF01906348. [DOI] [PubMed] [Google Scholar]
  15. Goodman E. M., Kim P. S. Periodicity of amide proton exchange rates in a coiled-coil leucine zipper peptide. Biochemistry. 1991 Dec 17;30(50):11615–11620. doi: 10.1021/bi00114a002. [DOI] [PubMed] [Google Scholar]
  16. Gordon A. M., Homsher E., Regnier M. Regulation of contraction in striated muscle. Physiol Rev. 2000 Apr;80(2):853–924. doi: 10.1152/physrev.2000.80.2.853. [DOI] [PubMed] [Google Scholar]
  17. Greenfield N. J., Huang Y. J., Palm T., Swapna G. V., Monleon D., Montelione G. T., Hitchcock-DeGregori S. E. Solution NMR structure and folding dynamics of the N terminus of a rat non-muscle alpha-tropomyosin in an engineered chimeric protein. J Mol Biol. 2001 Sep 28;312(4):833–847. doi: 10.1006/jmbi.2001.4982. [DOI] [PubMed] [Google Scholar]
  18. Greenfield N. J., Montelione G. T., Farid R. S., Hitchcock-DeGregori S. E. The structure of the N-terminus of striated muscle alpha-tropomyosin in a chimeric peptide: nuclear magnetic resonance structure and circular dichroism studies. Biochemistry. 1998 May 26;37(21):7834–7843. doi: 10.1021/bi973167m. [DOI] [PubMed] [Google Scholar]
  19. Greenfield N. J., Stafford W. F., Hitchcock-DeGregori S. E. The effect of N-terminal acetylation on the structure of an N-terminal tropomyosin peptide and alpha alpha-tropomyosin. Protein Sci. 1994 Mar;3(3):402–410. doi: 10.1002/pro.5560030304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Greenfield Norma J., Fowler Velia M. Tropomyosin requires an intact N-terminal coiled coil to interact with tropomodulin. Biophys J. 2002 May;82(5):2580–2591. doi: 10.1016/S0006-3495(02)75600-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hammell R. L., Hitchcock-DeGregori S. E. Mapping the functional domains within the carboxyl terminus of alpha-tropomyosin encoded by the alternatively spliced ninth exon. J Biol Chem. 1996 Feb 23;271(8):4236–4242. doi: 10.1074/jbc.271.8.4236. [DOI] [PubMed] [Google Scholar]
  22. Hammell R. L., Hitchcock-DeGregori S. E. The sequence of the alternatively spliced sixth exon of alpha-tropomyosin is critical for cooperative actin binding but not for interaction with troponin. J Biol Chem. 1997 Sep 5;272(36):22409–22416. doi: 10.1074/jbc.272.36.22409. [DOI] [PubMed] [Google Scholar]
  23. Heeley D. H., Smillie L. B., Lohmeier-Vogel E. M. Effects of deletion of tropomyosin overlap on regulated actomyosin subfragment 1 ATPase. Biochem J. 1989 Mar 15;258(3):831–836. doi: 10.1042/bj2580831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hodges R. S., Saund A. K., Chong P. C., St-Pierre S. A., Reid R. E. Synthetic model for two-stranded alpha-helical coiled-coils. Design, synthesis, and characterization of an 86-residue analog of tropomyosin. J Biol Chem. 1981 Feb 10;256(3):1214–1224. [PubMed] [Google Scholar]
  25. Holtzer M. E., Crimmins D. L., Holtzer A. Structural stability of short subsequences of the tropomyosin chain. Biopolymers. 1995 Jan;35(1):125–136. doi: 10.1002/bip.360350113. [DOI] [PubMed] [Google Scholar]
  26. Holtzer M. E., Holtzer A. Alpha-helix to random coil transitions of two-chain coiled coils: experiments on the thermal denaturation of isolated segments of alpha alpha-tropomyosin. Biopolymers. 1990;30(9-10):985–993. doi: 10.1002/bip.360300913. [DOI] [PubMed] [Google Scholar]
  27. Ishii Y., Hitchcock-DeGregori S., Mabuchi K., Lehrer S. S. Unfolding domains of recombinant fusion alpha alpha-tropomyosin. Protein Sci. 1992 Oct;1(10):1319–1325. doi: 10.1002/pro.5560011011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Junius F. K., O'Donoghue S. I., Nilges M., Weiss A. S., King G. F. High resolution NMR solution structure of the leucine zipper domain of the c-Jun homodimer. J Biol Chem. 1996 Jun 7;271(23):13663–13667. doi: 10.1074/jbc.271.23.13663. [DOI] [PubMed] [Google Scholar]
  29. Jurnak F. Protein-protein interaction. Complex flexibility. Nature. 1994 Dec 1;372(6505):409–410. doi: 10.1038/372409a0. [DOI] [PubMed] [Google Scholar]
  30. Katayama E., Nozaki S. Ca2+-dependent binding of synthetic peptides corresponding to some regions of troponin-I to troponin-C. J Biochem. 1982 Apr;91(4):1449–1452. doi: 10.1093/oxfordjournals.jbchem.a133835. [DOI] [PubMed] [Google Scholar]
  31. Krishnan K. S., Brandts J. F., Lehrer S. S. Effects of an interchain disulfide bond on tropomyosin structure. Differential scanning calorimetry. FEBS Lett. 1978 Jul 15;91(2):206–208. doi: 10.1016/0014-5793(78)81173-9. [DOI] [PubMed] [Google Scholar]
  32. Landschulz W. H., Johnson P. F., McKnight S. L. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science. 1988 Jun 24;240(4860):1759–1764. doi: 10.1126/science.3289117. [DOI] [PubMed] [Google Scholar]
  33. Lehrer S. S. Effects of an interchain disulfide bond on tropomyosin structure: intrinsic fluorescence and circular dichroism studies. J Mol Biol. 1978 Jan 15;118(2):209–226. doi: 10.1016/0022-2836(78)90413-8. [DOI] [PubMed] [Google Scholar]
  34. Lehrer S. S., Geeves M. A. The muscle thin filament as a classical cooperative/allosteric regulatory system. J Mol Biol. 1998 Apr 17;277(5):1081–1089. doi: 10.1006/jmbi.1998.1654. [DOI] [PubMed] [Google Scholar]
  35. Lehrer S. S., Golitsina N. L., Geeves M. A. Actin-tropomyosin activation of myosin subfragment 1 ATPase and thin filament cooperativity. The role of tropomyosin flexibility and end-to-end interactions. Biochemistry. 1997 Nov 4;36(44):13449–13454. doi: 10.1021/bi971568w. [DOI] [PubMed] [Google Scholar]
  36. Lehrer S. S. Intramolecular crosslinking of tropomyosin via disulfide bond formation: evidence for chain register. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3377–3381. doi: 10.1073/pnas.72.9.3377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Li Yu, Mui Suet, Brown Jerry H., Strand James, Reshetnikova Ludmilla, Tobacman Larry S., Cohen Carolyn. The crystal structure of the C-terminal fragment of striated-muscle alpha-tropomyosin reveals a key troponin T recognition site. Proc Natl Acad Sci U S A. 2002 May 28;99(11):7378–7383. doi: 10.1073/pnas.102179999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Mak A. S., Smillie L. B. Non-polymerizable tropomyosin: preparation, some properties and F-actin binding. Biochem Biophys Res Commun. 1981 Jul 16;101(1):208–214. doi: 10.1016/s0006-291x(81)80032-0. [DOI] [PubMed] [Google Scholar]
  39. Marti D. N., Jelesarov I., Bosshard H. R. Interhelical ion pairing in coiled coils: solution structure of a heterodimeric leucine zipper and determination of pKa values of Glu side chains. Biochemistry. 2000 Oct 24;39(42):12804–12818. doi: 10.1021/bi001242e. [DOI] [PubMed] [Google Scholar]
  40. McLachlan A. D., Stewart M. Tropomyosin coiled-coil interactions: evidence for an unstaggered structure. J Mol Biol. 1975 Oct 25;98(2):293–304. doi: 10.1016/s0022-2836(75)80119-7. [DOI] [PubMed] [Google Scholar]
  41. Moraczewska J., Hitchcock-DeGregori S. E. Independent functions for the N- and C-termini in the overlap region of tropomyosin. Biochemistry. 2000 Jun 13;39(23):6891–6897. doi: 10.1021/bi000242b. [DOI] [PubMed] [Google Scholar]
  42. Moraczewska J., Nicholson-Flynn K., Hitchcock-DeGregori S. E. The ends of tropomyosin are major determinants of actin affinity and myosin subfragment 1-induced binding to F-actin in the open state. Biochemistry. 1999 Nov 30;38(48):15885–15892. doi: 10.1021/bi991816j. [DOI] [PubMed] [Google Scholar]
  43. O'Neil K. T., DeGrado W. F. A thermodynamic scale for the helix-forming tendencies of the commonly occurring amino acids. Science. 1990 Nov 2;250(4981):646–651. doi: 10.1126/science.2237415. [DOI] [PubMed] [Google Scholar]
  44. Oas T. G., McIntosh L. P., O'Shea E. K., Dahlquist F. W., Kim P. S. Secondary structure of a leucine zipper determined by nuclear magnetic resonance spectroscopy. Biochemistry. 1990 Mar 27;29(12):2891–2894. doi: 10.1021/bi00464a001. [DOI] [PubMed] [Google Scholar]
  45. Ohyashiki T., Kanaoka Y., Sekine T. Studies on calcium ion-induced conformation changes in the actin-tropomyosin-troponin system by fluorimetry. III. Changes in the conformation of tropomyosin associated with functional states. Biochim Biophys Acta. 1976 Jan 20;420(1):27–36. doi: 10.1016/0005-2795(76)90341-x. [DOI] [PubMed] [Google Scholar]
  46. Oliveira D. M., Nakaie C. R., Sousa A. D., Farah C. S., Reinach F. C. Mapping the domain of troponin T responsible for the activation of actomyosin ATPase activity. Identification of residues involved in binding to actin. J Biol Chem. 2000 Sep 8;275(36):27513–27519. doi: 10.1074/jbc.M002735200. [DOI] [PubMed] [Google Scholar]
  47. Palm T., Graboski S., Hitchcock-DeGregori S. E., Greenfield N. J. Disease-causing mutations in cardiac troponin T: identification of a critical tropomyosin-binding region. Biophys J. 2001 Nov;81(5):2827–2837. doi: 10.1016/S0006-3495(01)75924-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Pan B. S., Gordon A. M., Luo Z. X. Removal of tropomyosin overlap modifies cooperative binding of myosin S-1 to reconstituted thin filaments of rabbit striated muscle. J Biol Chem. 1989 May 25;264(15):8495–8498. [PubMed] [Google Scholar]
  49. Perry S. V. Vertebrate tropomyosin: distribution, properties and function. J Muscle Res Cell Motil. 2001;22(1):5–49. doi: 10.1023/a:1010303732441. [DOI] [PubMed] [Google Scholar]
  50. Phillips G. N., Jr, Chacko S. Mechanical properties of tropomyosin and implications for muscle regulation. Biopolymers. 1996 Jan;38(1):89–95. doi: 10.1002/(SICI)1097-0282(199601)38:1%3C89::AID-BIP7%3E3.0.CO;2-S. [DOI] [PubMed] [Google Scholar]
  51. Phillips G. N., Jr Construction of an atomic model for tropomyosin and implications for interactions with actin. J Mol Biol. 1986 Nov 5;192(1):128–131. doi: 10.1016/0022-2836(86)90469-9. [DOI] [PubMed] [Google Scholar]
  52. Phillips G. N., Jr, Fillers J. P., Cohen C. Motions of tropomyosin. Crystal as metaphor. Biophys J. 1980 Oct;32(1):485–502. doi: 10.1016/S0006-3495(80)84985-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Phillips G. N., Jr, Fillers J. P., Cohen C. Tropomyosin crystal structure and muscle regulation. J Mol Biol. 1986 Nov 5;192(1):111–131. doi: 10.1016/0022-2836(86)90468-7. [DOI] [PubMed] [Google Scholar]
  54. Phillips G. N., Jr, Lattman E. E., Cummins P., Lee K. Y., Cohen C. Crystal structure and molecular interactions of tropomyosin. Nature. 1979 Mar 29;278(5703):413–417. doi: 10.1038/278413a0. [DOI] [PubMed] [Google Scholar]
  55. Potekhin S. A., Privalov P. L. Co-operative blocks in tropomyosin. J Mol Biol. 1982 Aug 15;159(3):519–535. doi: 10.1016/0022-2836(82)90299-6. [DOI] [PubMed] [Google Scholar]
  56. Privalov P. L. Stability of proteins. Proteins which do not present a single cooperative system. Adv Protein Chem. 1982;35:1–104. [PubMed] [Google Scholar]
  57. Rios C. B., Feng W., Tashiro M., Shang Z., Montelione G. T. Phase labeling of C-H and C-C spin-system topologies: application in constant-time PFG-CBCA(CO)NH experiments for discriminating amino acid spin-system types. J Biomol NMR. 1996 Oct;8(3):345–350. doi: 10.1007/BF00410332. [DOI] [PubMed] [Google Scholar]
  58. Ruiz-Opazo N., Nadal-Ginard B. Alpha-tropomyosin gene organization. Alternative splicing of duplicated isotype-specific exons accounts for the production of smooth and striated muscle isoforms. J Biol Chem. 1987 Apr 5;262(10):4755–4765. [PubMed] [Google Scholar]
  59. Sano K., Maeda K., Oda T., Maéda Y. The effect of single residue substitutions of serine-283 on the strength of head-to-tail interaction and actin binding properties of rabbit skeletal muscle alpha-tropomyosin. J Biochem. 2000 Jun;127(6):1095–1102. doi: 10.1093/oxfordjournals.jbchem.a022703. [DOI] [PubMed] [Google Scholar]
  60. Schenk P. M., Baumann S., Mattes R., Steinbiss H. H. Improved high-level expression system for eukaryotic genes in Escherichia coli using T7 RNA polymerase and rare ArgtRNAs. Biotechniques. 1995 Aug;19(2):196-8, 200. [PubMed] [Google Scholar]
  61. Schwarzinger S., Kroon G. J., Foss T. R., Wright P. E., Dyson H. J. Random coil chemical shifts in acidic 8 M urea: implementation of random coil shift data in NMRView. J Biomol NMR. 2000 Sep;18(1):43–48. doi: 10.1023/a:1008386816521. [DOI] [PubMed] [Google Scholar]
  62. Stewart M., Roberts G. C. Nuclear magnetic resonance evidence for a flexible region at the C-terminus of alpha-tropomyosin. J Mol Biol. 1983 May 15;166(2):219–225. doi: 10.1016/s0022-2836(83)80008-4. [DOI] [PubMed] [Google Scholar]
  63. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. doi: 10.1016/0076-6879(90)85008-c. [DOI] [PubMed] [Google Scholar]
  64. Sturtevant J. M., Holtzer M. E., Holtzer A. A scanning calorimetric study of the thermally induced unfolding of various forms of tropomyosin. Biopolymers. 1991 Apr;31(5):489–495. doi: 10.1002/bip.360310504. [DOI] [PubMed] [Google Scholar]
  65. Sundberg E. J., Mariuzza R. A. Luxury accommodations: the expanding role of structural plasticity in protein-protein interactions. Structure. 2000 Jul 15;8(7):R137–R142. doi: 10.1016/s0969-2126(00)00167-2. [DOI] [PubMed] [Google Scholar]
  66. Tawada Y., Oara H., Ooi T., Tawada K. Non-polymerizable tropomyosin and control of the superprecipitation of actomyosin. J Biochem. 1975 Jul;78(1):65–72. [PubMed] [Google Scholar]
  67. Tripet B., Wagschal K., Lavigne P., Mant C. T., Hodges R. S. Effects of side-chain characteristics on stability and oligomerization state of a de novo-designed model coiled-coil: 20 amino acid substitutions in position "d". J Mol Biol. 2000 Jul 7;300(2):377–402. doi: 10.1006/jmbi.2000.3866. [DOI] [PubMed] [Google Scholar]
  68. Wagschal K., Tripet B., Lavigne P., Mant C., Hodges R. S. The role of position a in determining the stability and oligomerization state of alpha-helical coiled coils: 20 amino acid stability coefficients in the hydrophobic core of proteins. Protein Sci. 1999 Nov;8(11):2312–2329. doi: 10.1110/ps.8.11.2312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Walsh T. P., Trueblood C. E., Evans R., Weber A. Removal of tropomyosin overlap and the co-operative response to increasing calcium concentrations of the acto-subfragment-1 ATPase. J Mol Biol. 1985 Mar 20;182(2):265–269. doi: 10.1016/0022-2836(85)90344-4. [DOI] [PubMed] [Google Scholar]
  70. Whitby F. G., Phillips G. N., Jr Crystal structure of tropomyosin at 7 Angstroms resolution. Proteins. 2000 Jan 1;38(1):49–59. [PubMed] [Google Scholar]
  71. Wishart D. S., Sykes B. D., Richards F. M. The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry. 1992 Feb 18;31(6):1647–1651. doi: 10.1021/bi00121a010. [DOI] [PubMed] [Google Scholar]
  72. Wishart D. S., Sykes B. D. The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data. J Biomol NMR. 1994 Mar;4(2):171–180. doi: 10.1007/BF00175245. [DOI] [PubMed] [Google Scholar]
  73. Zhou N. E., Kay C. M., Hodges R. S. Disulfide bond contribution to protein stability: positional effects of substitution in the hydrophobic core of the two-stranded alpha-helical coiled-coil. Biochemistry. 1993 Mar 30;32(12):3178–3187. doi: 10.1021/bi00063a033. [DOI] [PubMed] [Google Scholar]
  74. Zimmerman D. E., Kulikowski C. A., Huang Y., Feng W., Tashiro M., Shimotakahara S., Chien C., Powers R., Montelione G. T. Automated analysis of protein NMR assignments using methods from artificial intelligence. J Mol Biol. 1997 Jun 20;269(4):592–610. doi: 10.1006/jmbi.1997.1052. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES