Abstract
Cooperative calcium binding to the two homologous domains of calmodulin (CaM) induces conformational changes that regulate its association with and activation of numerous cellular target proteins. Calcium binding to the pair of high-affinity sites (III and IV in the C-domain) can be monitored by observing calcium-dependent changes in intrinsic tyrosine fluorescence intensity (lambda(ex)/lambda(em) of 277/320 nm). However, calcium binding to the low-affinity sites (I and II in the N-domain) is more difficult to measure with optical spectroscopy because that domain of CaM does not contain tryptophan or tyrosine. We recently demonstrated that calcium-dependent changes in intrinsic phenylalanine fluorescence (lambda(ex)/lambda(em) of 250/280 nm) of an N-domain fragment of CaM reflect occupancy of sites I and II (VanScyoc, W. S., and M. A. Shea, 2001, Protein Sci. 10:1758-1768). Using steady-state and time-resolved fluorescence methods, we now show that these excitation and emission wavelength pairs for phenylalanine and tyrosine fluorescence can be used to monitor equilibrium calcium titrations of the individual domains in full-length CaM. Calcium-dependent changes in phenylalanine fluorescence specifically indicate ion occupancy of sites I and II in the N-domain because phenylalanine residues in the C-domain are nonemissive. Tyrosine emission from the C-domain does not interfere with phenylalanine fluorescence signals from the N-domain. This is the first demonstration that intrinsic fluorescence may be used to monitor calcium binding to each domain of CaM. In this way, we also evaluated how mutations of two residues (Arg74 and Arg90) located between sites II and III can alter the calcium-binding properties of each of the domains. The mutation R74A caused an increase in the calcium affinity of sites I and II in the N-domain. The mutation R90A caused an increase in calcium affinity of sites III and IV in the C-domain whereas R90G caused an increase in calcium affinity of sites in both domains. This approach holds promise for exploring the linked energetics of calcium binding and target recognition.
Full Text
The Full Text of this article is available as a PDF (777.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ababou A., Desjarlais J. R. Solvation energetics and conformational change in EF-hand proteins. Protein Sci. 2001 Feb;10(2):301–312. doi: 10.1110/ps.33601. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Babu Y. S., Bugg C. E., Cook W. J. Structure of calmodulin refined at 2.2 A resolution. J Mol Biol. 1988 Nov 5;204(1):191–204. doi: 10.1016/0022-2836(88)90608-0. [DOI] [PubMed] [Google Scholar]
- Beckingham K. Use of site-directed mutations in the individual Ca2(+)-binding sites of calmodulin to examine Ca2(+)-induced conformational changes. J Biol Chem. 1991 Apr 5;266(10):6027–6030. [PubMed] [Google Scholar]
- Buccigross J. M., O'Donnell C. L., Nelson D. J. A flow-dialysis method for obtaining relative measures of association constants in calmodulin-metal-ion systems. Biochem J. 1986 May 1;235(3):677–684. doi: 10.1042/bj2350677. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chattopadhyaya R., Meador W. E., Means A. R., Quiocho F. A. Calmodulin structure refined at 1.7 A resolution. J Mol Biol. 1992 Dec 20;228(4):1177–1192. doi: 10.1016/0022-2836(92)90324-d. [DOI] [PubMed] [Google Scholar]
- Crivici A., Ikura M. Molecular and structural basis of target recognition by calmodulin. Annu Rev Biophys Biomol Struct. 1995;24:85–116. doi: 10.1146/annurev.bb.24.060195.000505. [DOI] [PubMed] [Google Scholar]
- Drake S. K., Zimmer M. A., Miller C. L., Falke J. J. Optimizing the metal binding parameters of an EF-hand-like calcium chelation loop: coordinating side chains play a more important tuning role than chelation loop flexibility. Biochemistry. 1997 Aug 12;36(32):9917–9926. doi: 10.1021/bi9703913. [DOI] [PubMed] [Google Scholar]
- Duneau J. P., Garnier N., Cremel G., Nullans G., Hubert P., Genest D., Vincent M., Gallay J., Genest M. Time resolved fluorescence properties of phenylalanine in different environments. Comparison with molecular dynamics simulation. Biophys Chem. 1998 Jul 13;73(1-2):109–119. doi: 10.1016/s0301-4622(98)00142-2. [DOI] [PubMed] [Google Scholar]
- Eisinger J. A variable temperature, U.V. luminescence spectrograph for small samples. Photochem Photobiol. 1969 Mar;9(3):247–258. doi: 10.1111/j.1751-1097.1969.tb07289.x. [DOI] [PubMed] [Google Scholar]
- Eisinger J., Feuer B., Lamola A. A. Intramolecular singlet excitation transfer. Applications to polypeptides. Biochemistry. 1969 Oct;8(10):3908–3915. doi: 10.1021/bi00838a005. [DOI] [PubMed] [Google Scholar]
- Gilli R., Lafitte D., Lopez C., Kilhoffer M., Makarov A., Briand C., Haiech J. Thermodynamic analysis of calcium and magnesium binding to calmodulin. Biochemistry. 1998 Apr 21;37(16):5450–5456. doi: 10.1021/bi972083a. [DOI] [PubMed] [Google Scholar]
- Grinvald A., Steinberg I. Z. On the analysis of fluorescence decay kinetics by the method of least-squares. Anal Biochem. 1974 Jun;59(2):583–598. doi: 10.1016/0003-2697(74)90312-1. [DOI] [PubMed] [Google Scholar]
- Haiech J., Klee C. B., Demaille J. G. Effects of cations on affinity of calmodulin for calcium: ordered binding of calcium ions allows the specific activation of calmodulin-stimulated enzymes. Biochemistry. 1981 Jun 23;20(13):3890–3897. doi: 10.1021/bi00516a035. [DOI] [PubMed] [Google Scholar]
- Haiech J., Vallet B., Aquaron R., Demaille J. G. Ligand binding to macromolecules: determination of binding parameters by combined use of ligand buffers and flow dialysis; application to calcium-binding proteins. Anal Biochem. 1980 Jun;105(1):18–23. doi: 10.1016/0003-2697(80)90416-9. [DOI] [PubMed] [Google Scholar]
- Ikura M., Hiraoki T., Hikichi K., Mikuni T., Yazawa M., Yagi K. Nuclear magnetic resonance studies on calmodulin: calcium-induced conformational change. Biochemistry. 1983 May 10;22(10):2573–2579. doi: 10.1021/bi00279a039. [DOI] [PubMed] [Google Scholar]
- Jaren O. R., Harmon S., Chen A. F., Shea M. A. Paramecium calmodulin mutants defective in ion channel regulation can bind calcium and undergo calcium-induced conformational switching. Biochemistry. 2000 Jun 13;39(23):6881–6890. doi: 10.1021/bi000037w. [DOI] [PubMed] [Google Scholar]
- Kilhoffer M. C., Kubina M., Travers F., Haiech J. Use of engineered proteins with internal tryptophan reporter groups and pertubation techniques to probe the mechanism of ligand-protein interactions: investigation of the mechanism of calcium binding to calmodulin. Biochemistry. 1992 Sep 1;31(34):8098–8106. doi: 10.1021/bi00149a046. [DOI] [PubMed] [Google Scholar]
- Klevit R. E., Dalgarno D. C., Levine B. A., Williams R. J. 1H-NMR studies of calmodulin. The nature of the Ca2+-dependent conformational change. Eur J Biochem. 1984 Feb 15;139(1):109–114. doi: 10.1111/j.1432-1033.1984.tb07983.x. [DOI] [PubMed] [Google Scholar]
- Klevit R. E. Spectroscopic analyses of calmodulin and its interactions. Methods Enzymol. 1983;102:82–104. doi: 10.1016/s0076-6879(83)02010-8. [DOI] [PubMed] [Google Scholar]
- Kuboniwa H., Tjandra N., Grzesiek S., Ren H., Klee C. B., Bax A. Solution structure of calcium-free calmodulin. Nat Struct Biol. 1995 Sep;2(9):768–776. doi: 10.1038/nsb0995-768. [DOI] [PubMed] [Google Scholar]
- Kung C., Preston R. R., Maley M. E., Ling K. Y., Kanabrocki J. A., Seavey B. R., Saimi Y. In vivo Paramecium mutants show that calmodulin orchestrates membrane responses to stimuli. Cell Calcium. 1992 Jun-Jul;13(6-7):413–425. doi: 10.1016/0143-4160(92)90054-v. [DOI] [PubMed] [Google Scholar]
- LaPorte D. C., Wierman B. M., Storm D. R. Calcium-induced exposure of a hydrophobic surface on calmodulin. Biochemistry. 1980 Aug 5;19(16):3814–3819. doi: 10.1021/bi00557a025. [DOI] [PubMed] [Google Scholar]
- Larson R. E., Espindola F. S., Espreafico E. M. Calmodulin-binding proteins and calcium/calmodulin-regulated enzyme activities associated with brain actomyosin. J Neurochem. 1990 Apr;54(4):1288–1294. doi: 10.1111/j.1471-4159.1990.tb01961.x. [DOI] [PubMed] [Google Scholar]
- Linse S., Helmersson A., Forsén S. Calcium binding to calmodulin and its globular domains. J Biol Chem. 1991 May 5;266(13):8050–8054. [PubMed] [Google Scholar]
- Malmendal A., Linse S., Evenäs J., Forsén S., Drakenberg T. Battle for the EF-hands: magnesium-calcium interference in calmodulin. Biochemistry. 1999 Sep 7;38(36):11844–11850. doi: 10.1021/bi9909288. [DOI] [PubMed] [Google Scholar]
- Martin S. R., Andersson Teleman A., Bayley P. M., Drakenberg T., Forsen S. Kinetics of calcium dissociation from calmodulin and its tryptic fragments. A stopped-flow fluorescence study using Quin 2 reveals a two-domain structure. Eur J Biochem. 1985 Sep 16;151(3):543–550. doi: 10.1111/j.1432-1033.1985.tb09137.x. [DOI] [PubMed] [Google Scholar]
- Martin S. R., Bayley P. M., Brown S. E., Porumb T., Zhang M., Ikura M. Spectroscopic characterization of a high-affinity calmodulin-target peptide hybrid molecule. Biochemistry. 1996 Mar 19;35(11):3508–3517. doi: 10.1021/bi952522a. [DOI] [PubMed] [Google Scholar]
- Martin S. R., Masino L., Bayley P. M. Enhancement by Mg2+ of domain specificity in Ca2+-dependent interactions of calmodulin with target sequences. Protein Sci. 2000 Dec;9(12):2477–2488. doi: 10.1110/ps.9.12.2477. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nelson M. R., Chazin W. J. An interaction-based analysis of calcium-induced conformational changes in Ca2+ sensor proteins. Protein Sci. 1998 Feb;7(2):270–282. doi: 10.1002/pro.5560070206. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nomura M., Stull J. T., Kamm K. E., Mumby M. C. Site-specific dephosphorylation of smooth muscle myosin light chain kinase by protein phosphatases 1 and 2A. Biochemistry. 1992 Dec 1;31(47):11915–11920. doi: 10.1021/bi00162a034. [DOI] [PubMed] [Google Scholar]
- Ohya Y., Botstein D. Diverse essential functions revealed by complementing yeast calmodulin mutants. Science. 1994 Feb 18;263(5149):963–966. doi: 10.1126/science.8310294. [DOI] [PubMed] [Google Scholar]
- Pedigo S., Shea M. A. Discontinuous equilibrium titrations of cooperative calcium binding to calmodulin monitored by 1-D 1H-nuclear magnetic resonance spectroscopy. Biochemistry. 1995 Aug 22;34(33):10676–10689. doi: 10.1021/bi00033a044. [DOI] [PubMed] [Google Scholar]
- Pedigo S., Shea M. A. Quantitative endoproteinase GluC footprinting of cooperative Ca2+ binding to calmodulin: proteolytic susceptibility of E31 and E87 indicates interdomain interactions. Biochemistry. 1995 Jan 31;34(4):1179–1196. doi: 10.1021/bi00004a011. [DOI] [PubMed] [Google Scholar]
- Permyakov E. A., Burstein E. A. Some aspects of studies of thermal transitions in proteins by means of their intrinsic fluorescence. Biophys Chem. 1984 May;19(3):265–271. doi: 10.1016/0301-4622(84)87009-x. [DOI] [PubMed] [Google Scholar]
- Putkey J. A., Slaughter G. R., Means A. R. Bacterial expression and characterization of proteins derived from the chicken calmodulin cDNA and a calmodulin processed gene. J Biol Chem. 1985 Apr 25;260(8):4704–4712. [PubMed] [Google Scholar]
- Renner M., Danielson M. A., Falke J. J. Kinetic control of Ca(II) signaling: tuning the ion dissociation rates of EF-hand Ca(II) binding sites. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6493–6497. doi: 10.1073/pnas.90.14.6493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Richman P. G., Klee C. B. Specific perturbation by Ca2+ of tyrosyl residue 138 of calmodulin. J Biol Chem. 1979 Jun 25;254(12):5372–5376. [PubMed] [Google Scholar]
- Rodney G. G., Moore C. P., Williams B. Y., Zhang J. Z., Krol J., Pedersen S. E., Hamilton S. L. Calcium binding to calmodulin leads to an N-terminal shift in its binding site on the ryanodine Receptor. J Biol Chem. 2000 Oct 16;276(3):2069–2074. doi: 10.1074/jbc.M008891200. [DOI] [PubMed] [Google Scholar]
- Schumacher M. A., Rivard A. F., Bächinger H. P., Adelman J. P. Structure of the gating domain of a Ca2+-activated K+ channel complexed with Ca2+/calmodulin. Nature. 2001 Apr 26;410(6832):1120–1124. doi: 10.1038/35074145. [DOI] [PubMed] [Google Scholar]
- Seamon K. B. Calcium- and magnesium-dependent conformational states of calmodulin as determined by nuclear magnetic resonance. Biochemistry. 1980 Jan 8;19(1):207–215. doi: 10.1021/bi00542a031. [DOI] [PubMed] [Google Scholar]
- Searcy D. G., Montenay-Garestier T., Hélène C. Phenylalanine-to-tyrosine singlet energy transfer in the archaebacterial histone-like protein HTa. Biochemistry. 1989 Nov 14;28(23):9058–9065. doi: 10.1021/bi00449a015. [DOI] [PubMed] [Google Scholar]
- Shea M. A., Sorensen B. R., Pedigo S., Verhoeven A. S. Proteolytic footprinting titrations for estimating ligand-binding constants and detecting pathways of conformational switching of calmodulin. Methods Enzymol. 2000;323:254–301. doi: 10.1016/s0076-6879(00)23370-3. [DOI] [PubMed] [Google Scholar]
- Shea M. A., Verhoeven A. S., Pedigo S. Calcium-induced interactions of calmodulin domains revealed by quantitative thrombin footprinting of Arg37 and Arg106. Biochemistry. 1996 Mar 5;35(9):2943–2957. doi: 10.1021/bi951934g. [DOI] [PubMed] [Google Scholar]
- Sorensen B. R., Shea M. A. Calcium binding decreases the stokes radius of calmodulin and mutants R74A, R90A, and R90G. Biophys J. 1996 Dec;71(6):3407–3420. doi: 10.1016/S0006-3495(96)79535-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sorensen B. R., Shea M. A. Interactions between domains of apo calmodulin alter calcium binding and stability. Biochemistry. 1998 Mar 24;37(12):4244–4253. doi: 10.1021/bi9718200. [DOI] [PubMed] [Google Scholar]
- Sorensen Brenda R., Faga Laurel A., Hultman Rainbo, Shea Madeline A. An interdomain linker increases the thermostability and decreases the calcium affinity of the calmodulin N-domain. Biochemistry. 2002 Jan 8;41(1):15–20. doi: 10.1021/bi011718+. [DOI] [PubMed] [Google Scholar]
- Strynadka N. C., James M. N. Crystal structures of the helix-loop-helix calcium-binding proteins. Annu Rev Biochem. 1989;58:951–998. doi: 10.1146/annurev.bi.58.070189.004511. [DOI] [PubMed] [Google Scholar]
- Tikunova S. B., Black D. J., Johnson J. D., Davis J. P. Modifying Mg2+ binding and exchange with the N-terminal of calmodulin. Biochemistry. 2001 Mar 20;40(11):3348–3353. doi: 10.1021/bi0021333. [DOI] [PubMed] [Google Scholar]
- VanScyoc W. S., Shea M. A. Phenylalanine fluorescence studies of calcium binding to N-domain fragments of Paramecium calmodulin mutants show increased calcium affinity correlates with increased disorder. Protein Sci. 2001 Sep;10(9):1758–1768. doi: 10.1110/ps.11601. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waltersson Y., Linse S., Brodin P., Grundström T. Mutational effects on the cooperativity of Ca2+ binding in calmodulin. Biochemistry. 1993 Aug 10;32(31):7866–7871. doi: 10.1021/bi00082a005. [DOI] [PubMed] [Google Scholar]
- Wang C. L. A note on Ca2+ binding to calmodulin. Biochem Biophys Res Commun. 1985 Jul 16;130(1):426–430. doi: 10.1016/0006-291x(85)90434-6. [DOI] [PubMed] [Google Scholar]
- Weinstein H., Mehler E. L. Ca(2+)-binding and structural dynamics in the functions of calmodulin. Annu Rev Physiol. 1994;56:213–236. doi: 10.1146/annurev.ph.56.030194.001241. [DOI] [PubMed] [Google Scholar]
- Yao Y., Schöneich C., Squier T. C. Resolution of structural changes associated with calcium activation of calmodulin using frequency domain fluorescence spectroscopy. Biochemistry. 1994 Jun 28;33(25):7797–7810. doi: 10.1021/bi00191a007. [DOI] [PubMed] [Google Scholar]
- Yap K. L., Ames J. B., Swindells M. B., Ikura M. Diversity of conformational states and changes within the EF-hand protein superfamily. Proteins. 1999 Nov 15;37(3):499–507. doi: 10.1002/(sici)1097-0134(19991115)37:3<499::aid-prot17>3.0.co;2-y. [DOI] [PubMed] [Google Scholar]