Abstract
A lattice-based model of a protein and the Monte Carlo simulation method are used to calculate the entropy loss of dimerization of the GCN4 leucine zipper. In the representation used, a protein is a sequence of interaction centers arranged on a cubic lattice, with effective interaction potentials that are both of physical and statistical nature. The Monte Carlo simulation method is then used to sample the partition functions of both the monomer and dimer forms as a function of temperature. A method is described to estimate the entropy loss upon dimerization, a quantity that enters the free energy difference between monomer and dimer, and the corresponding dimerization reaction constant. As expected, but contrary to previous numerical studies, we find that the entropy loss of dimerization is a strong function of energy (or temperature), except in the limit of large energies in which the motion of the two dimer chains becomes largely uncorrelated. At the monomer-dimer transition temperature we find that the entropy loss of dimerization is approximately five times smaller than the value that would result from ideal gas statistics, a result that is qualitatively consistent with a recent experimental determination of the entropy loss of dimerization of a synthetic peptide that also forms a two-stranded alpha-helical coiled coil.
Full Text
The Full Text of this article is available as a PDF (240.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
- Ferrenberg AM, Swendsen RH. Optimized Monte Carlo data analysis. Phys Rev Lett. 1989 Sep 18;63(12):1195–1198. doi: 10.1103/PhysRevLett.63.1195. [DOI] [PubMed] [Google Scholar]
- Harbury P. B., Zhang T., Kim P. S., Alber T. A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants. Science. 1993 Nov 26;262(5138):1401–1407. doi: 10.1126/science.8248779. [DOI] [PubMed] [Google Scholar]
- Holtzer M. E., Bretthorst G. L., d'Avignon D. A., Angeletti R. H., Mints L., Holtzer A. Temperature dependence of the folding and unfolding kinetics of the GCN4 leucine zipper via 13C(alpha)-NMR. Biophys J. 2001 Feb;80(2):939–951. doi: 10.1016/s0006-3495(01)76073-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kenar K. T., García-Moreno B., Freire E. A calorimetric characterization of the salt dependence of the stability of the GCN4 leucine zipper. Protein Sci. 1995 Sep;4(9):1934–1938. doi: 10.1002/pro.5560040929. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kihara D., Lu H., Kolinski A., Skolnick J. TOUCHSTONE: an ab initio protein structure prediction method that uses threading-based tertiary restraints. Proc Natl Acad Sci U S A. 2001 Aug 14;98(18):10125–10130. doi: 10.1073/pnas.181328398. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kolinski A., Rotkiewicz P., Ilkowski B., Skolnick J. A method for the improvement of threading-based protein models. Proteins. 1999 Dec 1;37(4):592–610. doi: 10.1002/(sici)1097-0134(19991201)37:4<592::aid-prot10>3.0.co;2-2. [DOI] [PubMed] [Google Scholar]
- Kolinski A., Skolnick J. Assembly of protein structure from sparse experimental data: an efficient Monte Carlo model. Proteins. 1998 Sep 1;32(4):475–494. [PubMed] [Google Scholar]
- Kolinski A., Skolnick J. Monte Carlo simulations of protein folding. I. Lattice model and interaction scheme. Proteins. 1994 Apr;18(4):338–352. doi: 10.1002/prot.340180405. [DOI] [PubMed] [Google Scholar]
- Mohanty D., Kolinski A., Skolnick J. De novo simulations of the folding thermodynamics of the GCN4 leucine zipper. Biophys J. 1999 Jul;77(1):54–69. doi: 10.1016/S0006-3495(99)76872-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Shea E. K., Klemm J. D., Kim P. S., Alber T. X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. Science. 1991 Oct 25;254(5031):539–544. doi: 10.1126/science.1948029. [DOI] [PubMed] [Google Scholar]
- Swendsen RH, Wang JS. Replica Monte Carlo simulation of spin glasses. Phys Rev Lett. 1986 Nov 24;57(21):2607–2609. doi: 10.1103/PhysRevLett.57.2607. [DOI] [PubMed] [Google Scholar]
- Vieth M., Kolinski A., Brooks C. L., 3rd, Skolnick J. Prediction of quaternary structure of coiled coils. Application to mutants of the GCN4 leucine zipper. J Mol Biol. 1995 Aug 18;251(3):448–467. doi: 10.1006/jmbi.1995.0447. [DOI] [PubMed] [Google Scholar]
- Vieth M., Kolinski A., Skolnick J. Method for predicting the state of association of discretized protein models. Application to leucine zippers. Biochemistry. 1996 Jan 23;35(3):955–967. doi: 10.1021/bi9520702. [DOI] [PubMed] [Google Scholar]
- Yu Y. B., Privalov P. L., Hodges R. S. Contribution of translational and rotational motions to molecular association in aqueous solution. Biophys J. 2001 Sep;81(3):1632–1642. doi: 10.1016/S0006-3495(01)75817-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- d'Avignon D. A., Bretthorst G. L., Holtzer M. E., Holtzer A. Site-specific thermodynamics and kinetics of a coiled-coil transition by spin inversion transfer NMR. Biophys J. 1998 Jun;74(6):3190–3197. doi: 10.1016/S0006-3495(98)78025-7. [DOI] [PMC free article] [PubMed] [Google Scholar]