Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Nov;83(5):2856–2863. doi: 10.1016/S0006-3495(02)75294-6

Importance of intracellular water apparent diffusion to the measurement of membrane permeability.

Jonathan V Sehy 1, Alison A Banks 1, Joseph J H Ackerman 1, Jeffrey J Neil 1
PMCID: PMC1302369  PMID: 12414717

Abstract

The exchange of water across biological membranes is of fundamental significance to both animal and plant physiology. Diffusional membrane permeability (P(d)) for the Xenopus oocyte, an important model system for water channel investigation, is typically calculated from intracellular water pre-exchange lifetime, cell volume, and cell surface area. There is debate, however, whether intracellular water motion affects water lifetime, and thereby P(d). Mathematical modeling of water transport is problematic because the intracellular water diffusion rate constant (D) for cells is usually unknown. The measured permeability may be referred to as the apparent diffusional permeability, P, to acknowledge this potential error. Herein, we show that magnetic resonance (MR) spectroscopy can be used to measure oocyte water exchange with greater temporal resolution and higher signal-to-noise ratio than other methods. MR imaging can be used to assess both oocyte geometry and intracellular water diffusion for the same single cells. MR imaging is used to confirm the dependence of intracellular water lifetime on intracellular diffusion. A model is presented to relate intracellular lifetime to true membrane diffusional permeability. True water diffusional permeability (2.7 +/- 0.4 microm/s) is shown to be 39 +/- 6% greater than apparent diffusional permeability for 8 oocytes. This discrepancy increases with cell size and permeability (such as after water channel expression) and decreases with increasing intracellular water D.

Full Text

The Full Text of this article is available as a PDF (415.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barry P. H., Diamond J. M. Effects of unstirred layers on membrane phenomena. Physiol Rev. 1984 Jul;64(3):763–872. doi: 10.1152/physrev.1984.64.3.763. [DOI] [PubMed] [Google Scholar]
  2. Haglund B., Loeffler C. A. Water diffusion and water permeation in eggs from three Anuran species. J Cell Physiol. 1969 Feb;73(1):69–80. doi: 10.1002/jcp.1040730110. [DOI] [PubMed] [Google Scholar]
  3. Herbst M. D., Goldstein J. H. A review of water diffusion measurement by NMR in human red blood cells. Am J Physiol. 1989 May;256(5 Pt 1):C1097–C1104. doi: 10.1152/ajpcell.1989.256.5.C1097. [DOI] [PubMed] [Google Scholar]
  4. Iserovich P., Kuang K., Chun T., Fischbarg J. A novel method to determine the diffusional water permeability of oocyte plasma membranes. Biol Cell. 1997 Aug;89(5-6):293–297. [PubMed] [Google Scholar]
  5. KOEFOED-JOHNSEN V., USSING H. H. The contributions of diffusion and flow to the passage of D2O through living membranes; effect of neurohypophyseal hormone on isolated anuran skin. Acta Physiol Scand. 1953 Mar 31;28(1):60–76. doi: 10.1111/j.1748-1716.1953.tb00959.x. [DOI] [PubMed] [Google Scholar]
  6. Lovtrup S. On the rate of water exchange across the surface of animal cells. J Theor Biol. 1963 Nov;5(3):341–359. doi: 10.1016/0022-5193(63)90082-1. [DOI] [PubMed] [Google Scholar]
  7. Mild K. H. Diffusion exchange between a membrane-bounded sphere and its surrounding. Bull Math Biophys. 1972 Mar;34(1):93–102. doi: 10.1007/BF02477029. [DOI] [PubMed] [Google Scholar]
  8. PRESCOTT D. M., ZEUTHEN E. Comparison of water diffusion and water filtration across cell surfaces. Acta Physiol Scand. 1953 Mar 31;28(1):77–94. doi: 10.1111/j.1748-1716.1953.tb00960.x. [DOI] [PubMed] [Google Scholar]
  9. Sehy J. V., Ackerman J. J., Neil J. J. Water and lipid MRI of the Xenopus oocyte. Magn Reson Med. 2001 Nov;46(5):900–906. doi: 10.1002/mrm.1275. [DOI] [PubMed] [Google Scholar]
  10. Sehy Jonathan V., Ackerman Joseph J. H., Neil Jeffrey J. Apparent diffusion of water, ions, and small molecules in the Xenopus oocyte is consistent with Brownian displacement. Magn Reson Med. 2002 Jul;48(1):42–51. doi: 10.1002/mrm.10181. [DOI] [PubMed] [Google Scholar]
  11. Smith L. D., Xu W. L., Varnold R. L. Oogenesis and oocyte isolation. Methods Cell Biol. 1991;36:45–60. doi: 10.1016/s0091-679x(08)60272-1. [DOI] [PubMed] [Google Scholar]
  12. Snaar J. E., Van As H. Probing water compartments and membrane permeability in plant cells by H NMR relaxation measurements. Biophys J. 1992 Dec;63(6):1654–1658. doi: 10.1016/S0006-3495(92)81741-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Verkman A. S. Water permeability measurement in living cells and complex tissues. J Membr Biol. 2000 Jan 15;173(2):73–87. doi: 10.1007/s002320001009. [DOI] [PubMed] [Google Scholar]
  14. Waldeck A. R., Nouri-Sorkhabi M. H., Sullivan D. R., Kuchel P. W. Effects of cholesterol on transmembrane water diffusion in human erythrocytes measured using pulsed field gradient NMR. Biophys Chem. 1995 Aug;55(3):197–208. doi: 10.1016/0301-4622(95)00007-k. [DOI] [PubMed] [Google Scholar]
  15. Zhang R. B., Verkman A. S. Water and urea permeability properties of Xenopus oocytes: expression of mRNA from toad urinary bladder. Am J Physiol. 1991 Jan;260(1 Pt 1):C26–C34. doi: 10.1152/ajpcell.1991.260.1.C26. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES