Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Nov;83(5):2864–2871. doi: 10.1016/S0006-3495(02)75295-8

Characterization of a new caged proton capable of inducing large pH jumps.

Andreas Barth 1, John E T Corrie 1
PMCID: PMC1302370  PMID: 12414718

Abstract

A new caged proton, 1-(2-nitrophenyl)ethyl sulfate (caged sulfate), is characterized by infrared spectroscopy and compared with a known caged, proton 2-hydroxyphenyl 1-(2-nitrophenyl)ethyl phosphate (caged HPP). In contrast to caged HPP, caged sulfate can induce large pH jumps and protonate groups that have pK values as low as 2.2. The photolysis mechanism of caged sulfate is analogous to that of P(3)-[1-(2-nitrophenyl)ethyl] ATP (caged ATP), and the photolysis efficiency is similar. The utility of this new caged compound for biological studies was demonstrated by its ability to drive the acid-induced conformational change of metmyoglobin. This transition from the native conformation to a partially unfolded form takes place near pH 4 and was monitored by near-UV absorption spectroscopy.

Full Text

The Full Text of this article is available as a PDF (236.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbruzzetti S., Viappiani C., Small J. R., Libertini L. J., Small E. W. Kinetics of local helix formation in poly-L-glutamic acid studied by time-resolved photoacoustics: neutralization reactions of carboxylates in aqueous solutions and their relevance to the problem of protein folding. Biophys J. 2000 Nov;79(5):2714–2721. doi: 10.1016/S0006-3495(00)76509-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adams S. R., Tsien R. Y. Controlling cell chemistry with caged compounds. Annu Rev Physiol. 1993;55:755–784. doi: 10.1146/annurev.ph.55.030193.003543. [DOI] [PubMed] [Google Scholar]
  3. Barth A., Kreutz W., Mäntele W. Molecular changes in the sarcoplasmic reticulum calcium ATPase during catalytic activity. A Fourier transform infrared (FTIR) study using photolysis of caged ATP to trigger the reaction cycle. FEBS Lett. 1990 Dec 17;277(1-2):147–150. doi: 10.1016/0014-5793(90)80830-c. [DOI] [PubMed] [Google Scholar]
  4. Barth A. Phosphoenzyme conversion of the sarcoplasmic reticulum Ca(2+)-ATPase. Molecular interpretation of infrared difference spectra. J Biol Chem. 1999 Aug 6;274(32):22170–22175. doi: 10.1074/jbc.274.32.22170. [DOI] [PubMed] [Google Scholar]
  5. Barth A., Zscherp C. Substrate binding and enzyme function investigated by infrared spectroscopy. FEBS Lett. 2000 Jul 21;477(3):151–156. doi: 10.1016/s0014-5793(00)01782-8. [DOI] [PubMed] [Google Scholar]
  6. Barth A., von Germar F., Kreutz W., Mäntele W. Time-resolved infrared spectroscopy of the Ca2+-ATPase. The enzyme at work. J Biol Chem. 1996 Nov 29;271(48):30637–30646. doi: 10.1074/jbc.271.48.30637. [DOI] [PubMed] [Google Scholar]
  7. Cheng H., Sukal S., Deng H., Leyh T. S., Callender R. Vibrational structure of GDP and GTP bound to RAS: an isotope-edited FTIR study. Biochemistry. 2001 Apr 3;40(13):4035–4043. doi: 10.1021/bi0021131. [DOI] [PubMed] [Google Scholar]
  8. Chi Z., Asher S. A. UV resonance Raman determination of protein acid denaturation: selective unfolding of helical segments of horse myoglobin. Biochemistry. 1998 Mar 3;37(9):2865–2872. doi: 10.1021/bi971161r. [DOI] [PubMed] [Google Scholar]
  9. Chirgadze Y. N., Fedorov O. V., Trushina N. P. Estimation of amino acid residue side-chain absorption in the infrared spectra of protein solutions in heavy water. Biopolymers. 1975 Apr;14(4):679–694. doi: 10.1002/bip.1975.360140402. [DOI] [PubMed] [Google Scholar]
  10. Janko K., Reichert J. Proton concentration jumps and generation of transmembrane pH-gradients by photolysis of 4-formyl-6-methoxy-3-nitrophenoxyacetic acid. Biochim Biophys Acta. 1987 Dec 11;905(2):409–416. doi: 10.1016/0005-2736(87)90470-6. [DOI] [PubMed] [Google Scholar]
  11. Jayaraman V., Thiran S., Madden D. R. Fourier transform infrared spectroscopic characterization of a photolabile precursor of glutamate. FEBS Lett. 2000 Jun 23;475(3):278–282. doi: 10.1016/s0014-5793(00)01690-2. [DOI] [PubMed] [Google Scholar]
  12. Kaplan J. H., Forbush B., 3rd, Hoffman J. F. Rapid photolytic release of adenosine 5'-triphosphate from a protected analogue: utilization by the Na:K pump of human red blood cell ghosts. Biochemistry. 1978 May 16;17(10):1929–1935. doi: 10.1021/bi00603a020. [DOI] [PubMed] [Google Scholar]
  13. Kaplan J. H. Photochemical manipulation of divalent cation levels. Annu Rev Physiol. 1990;52:897–914. doi: 10.1146/annurev.ph.52.030190.004225. [DOI] [PubMed] [Google Scholar]
  14. Khan S., Castellano F., Spudich J. L., McCray J. A., Goody R. S., Reid G. P., Trentham D. R. Excitatory signaling in bacterial probed by caged chemoeffectors. Biophys J. 1993 Dec;65(6):2368–2382. doi: 10.1016/S0006-3495(93)81317-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McCray J. A., Trentham D. R. Properties and uses of photoreactive caged compounds. Annu Rev Biophys Biophys Chem. 1989;18:239–270. doi: 10.1146/annurev.bb.18.060189.001323. [DOI] [PubMed] [Google Scholar]
  16. Palaniappan V., Bocian D. F. Acid-induced transformations of myoglobin. Characterization of a new equilibrium heme-pocket intermediate. Biochemistry. 1994 Nov 29;33(47):14264–14274. doi: 10.1021/bi00251a039. [DOI] [PubMed] [Google Scholar]
  17. Sage J. T., Morikis D., Champion P. M. Spectroscopic studies of myoglobin at low pH: heme structure and ligation. Biochemistry. 1991 Feb 5;30(5):1227–1237. doi: 10.1021/bi00219a010. [DOI] [PubMed] [Google Scholar]
  18. Schowen K. B., Schowen R. L. Solvent isotope effects of enzyme systems. Methods Enzymol. 1982;87:551–606. [PubMed] [Google Scholar]
  19. Tserng K. Y., Klein P. D. Synthesis of sulfate esters of lithocholic acid, glycolithocholic acid, and taurolithocholic acid with sulfur trioxide-triethylamine. J Lipid Res. 1977 Jul;18(4):491–495. [PubMed] [Google Scholar]
  20. Venyaminov SYu, Kalnin N. N. Quantitative IR spectrophotometry of peptide compounds in water (H2O) solutions. I. Spectral parameters of amino acid residue absorption bands. Biopolymers. 1990;30(13-14):1243–1257. doi: 10.1002/bip.360301309. [DOI] [PubMed] [Google Scholar]
  21. Zscherp C., Barth A. Reaction-induced infrared difference spectroscopy for the study of protein reaction mechanisms. Biochemistry. 2001 Feb 20;40(7):1875–1883. doi: 10.1021/bi002567y. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES