Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Dec;83(6):2981–2986. doi: 10.1016/S0006-3495(02)75304-6

Residual charge interactions in unfolded staphylococcal nuclease can be explained by the Gaussian-chain model.

Huan-Xiang Zhou 1
PMCID: PMC1302379  PMID: 12496071

Abstract

The discrepancy of the pH dependence of the unfolding free energy for staphylococcal nuclease from what is expected from an idealized model for the unfolded state is accounted for by the recently developed Gaussian-chain model. Residual electrostatic effects in the unfolded state are attributed to nonspecific interactions dominated by charges close along the sequence. The dominance of nonspecific local interactions appears to be supported by some experimental evidence.

Full Text

The Full Text of this article is available as a PDF (83.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexandrescu A. T., Mills D. A., Ulrich E. L., Chinami M., Markley J. L. NMR assignments of the four histidines of staphylococcal nuclease in native and denatured states. Biochemistry. 1988 Mar 22;27(6):2158–2165. doi: 10.1021/bi00406a051. [DOI] [PubMed] [Google Scholar]
  2. Bierzynski A., Baldwin R. L. Local secondary structure in ribonuclease A denatured by guanidine . HCl near 1 degree C. J Mol Biol. 1982 Nov 25;162(1):173–186. doi: 10.1016/0022-2836(82)90167-x. [DOI] [PubMed] [Google Scholar]
  3. Choy W. Y., Forman-Kay J. D. Calculation of ensembles of structures representing the unfolded state of an SH3 domain. J Mol Biol. 2001 May 18;308(5):1011–1032. doi: 10.1006/jmbi.2001.4750. [DOI] [PubMed] [Google Scholar]
  4. Dill K. A., Shortle D. Denatured states of proteins. Annu Rev Biochem. 1991;60:795–825. doi: 10.1146/annurev.bi.60.070191.004051. [DOI] [PubMed] [Google Scholar]
  5. Elcock A. H. Realistic modeling of the denatured states of proteins allows accurate calculations of the pH dependence of protein stability. J Mol Biol. 1999 Dec 10;294(4):1051–1062. doi: 10.1006/jmbi.1999.3305. [DOI] [PubMed] [Google Scholar]
  6. Flanagan J. M., Kataoka M., Shortle D., Engelman D. M. Truncated staphylococcal nuclease is compact but disordered. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):748–752. doi: 10.1073/pnas.89.2.748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gillespie J. R., Shortle D. Characterization of long-range structure in the denatured state of staphylococcal nuclease. II. Distance restraints from paramagnetic relaxation and calculation of an ensemble of structures. J Mol Biol. 1997 Apr 25;268(1):170–184. doi: 10.1006/jmbi.1997.0953. [DOI] [PubMed] [Google Scholar]
  8. Klimov D. K., Newfield D., Thirumalai D. Simulations of beta-hairpin folding confined to spherical pores using distributed computing. Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):8019–8024. doi: 10.1073/pnas.072220699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kuhlman B., Luisi D. L., Young P., Raleigh D. P. pKa values and the pH dependent stability of the N-terminal domain of L9 as probes of electrostatic interactions in the denatured state. Differentiation between local and nonlocal interactions. Biochemistry. 1999 Apr 13;38(15):4896–4903. doi: 10.1021/bi982931h. [DOI] [PubMed] [Google Scholar]
  10. Kundrotas P. J., Karshikoff A. Model for calculation of electrostatic interactions in unfolded proteins. Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Dec 11;65(1 Pt 1):011901–011901. doi: 10.1103/PhysRevE.65.011901. [DOI] [PubMed] [Google Scholar]
  11. Logan T. M., Thériault Y., Fesik S. W. Structural characterization of the FK506 binding protein unfolded in urea and guanidine hydrochloride. J Mol Biol. 1994 Feb 18;236(2):637–648. doi: 10.1006/jmbi.1994.1173. [DOI] [PubMed] [Google Scholar]
  12. Meeker A. K., Garcia-Moreno B., Shortle D. Contributions of the ionizable amino acids to the stability of staphylococcal nuclease. Biochemistry. 1996 May 21;35(20):6443–6449. doi: 10.1021/bi960171+. [DOI] [PubMed] [Google Scholar]
  13. Mok Y. K., Kay C. M., Kay L. E., Forman-Kay J. NOE data demonstrating a compact unfolded state for an SH3 domain under non-denaturing conditions. J Mol Biol. 1999 Jun 11;289(3):619–638. doi: 10.1006/jmbi.1999.2769. [DOI] [PubMed] [Google Scholar]
  14. Neri D., Billeter M., Wider G., Wüthrich K. NMR determination of residual structure in a urea-denatured protein, the 434-repressor. Science. 1992 Sep 11;257(5076):1559–1563. doi: 10.1126/science.1523410. [DOI] [PubMed] [Google Scholar]
  15. Nozaki Y., Tanford C. Acid-base titrations in concentrated guanidine hydrochloride. Dissociation constants of the guamidinium ion and of some amino acids. J Am Chem Soc. 1967 Feb 15;89(4):736–742. doi: 10.1021/ja00980a002. [DOI] [PubMed] [Google Scholar]
  16. Nozaki Y., Tanford C. Proteins as random coils. II. Hydrogen ion titration curve of ribonuclease in 6 M guanidine hydrochloride. J Am Chem Soc. 1967 Feb 15;89(4):742–749. doi: 10.1021/ja00980a003. [DOI] [PubMed] [Google Scholar]
  17. Oliveberg M., Arcus V. L., Fersht A. R. pKA values of carboxyl groups in the native and denatured states of barnase: the pKA values of the denatured state are on average 0.4 units lower than those of model compounds. Biochemistry. 1995 Jul 25;34(29):9424–9433. doi: 10.1021/bi00029a018. [DOI] [PubMed] [Google Scholar]
  18. Pace C. N., Alston R. W., Shaw K. L. Charge-charge interactions influence the denatured state ensemble and contribute to protein stability. Protein Sci. 2000 Jul;9(7):1395–1398. doi: 10.1110/ps.9.7.1395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pace C. N., Laurents D. V., Thomson J. A. pH dependence of the urea and guanidine hydrochloride denaturation of ribonuclease A and ribonuclease T1. Biochemistry. 1990 Mar 13;29(10):2564–2572. doi: 10.1021/bi00462a019. [DOI] [PubMed] [Google Scholar]
  20. Schwalbe H., Fiebig K. M., Buck M., Jones J. A., Grimshaw S. B., Spencer A., Glaser S. J., Smith L. J., Dobson C. M. Structural and dynamical properties of a denatured protein. Heteronuclear 3D NMR experiments and theoretical simulations of lysozyme in 8 M urea. Biochemistry. 1997 Jul 22;36(29):8977–8991. doi: 10.1021/bi970049q. [DOI] [PubMed] [Google Scholar]
  21. Shortle D., Ackerman M. S. Persistence of native-like topology in a denatured protein in 8 M urea. Science. 2001 Jul 20;293(5529):487–489. doi: 10.1126/science.1060438. [DOI] [PubMed] [Google Scholar]
  22. Shortle D. The denatured state (the other half of the folding equation) and its role in protein stability. FASEB J. 1996 Jan;10(1):27–34. doi: 10.1096/fasebj.10.1.8566543. [DOI] [PubMed] [Google Scholar]
  23. Sinclair J. F., Shortle D. Analysis of long-range interactions in a model denatured state of staphylococcal nuclease based on correlated changes in backbone dynamics. Protein Sci. 1999 May;8(5):991–1000. doi: 10.1110/ps.8.5.991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Stigter D., Alonso D. O., Dill K. A. Protein stability: electrostatics and compact denatured states. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4176–4180. doi: 10.1073/pnas.88.10.4176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Swint-Kruse L., Robertson A. D. Hydrogen bonds and the pH dependence of ovomucoid third domain stability. Biochemistry. 1995 Apr 11;34(14):4724–4732. doi: 10.1021/bi00014a029. [DOI] [PubMed] [Google Scholar]
  26. Tan Y. J., Oliveberg M., Davis B., Fersht A. R. Perturbed pKA-values in the denatured states of proteins. J Mol Biol. 1995 Dec 15;254(5):980–992. doi: 10.1006/jmbi.1995.0670. [DOI] [PubMed] [Google Scholar]
  27. Tanford C. Protein denaturation. C. Theoretical models for the mechanism of denaturation. Adv Protein Chem. 1970;24:1–95. [PubMed] [Google Scholar]
  28. Whitten S. T., García-Moreno E B. pH dependence of stability of staphylococcal nuclease: evidence of substantial electrostatic interactions in the denatured state. Biochemistry. 2000 Nov 21;39(46):14292–14304. doi: 10.1021/bi001015c. [DOI] [PubMed] [Google Scholar]
  29. Wong K. B., Clarke J., Bond C. J., Neira J. L., Freund S. M., Fersht A. R., Daggett V. Towards a complete description of the structural and dynamic properties of the denatured state of barnase and the role of residual structure in folding. J Mol Biol. 2000 Mar 10;296(5):1257–1282. doi: 10.1006/jmbi.2000.3523. [DOI] [PubMed] [Google Scholar]
  30. Wrabl J., Shortle D. A model of the changes in denatured state structure underlying m value effects in staphylococcal nuclease. Nat Struct Biol. 1999 Sep;6(9):876–883. doi: 10.1038/12338. [DOI] [PubMed] [Google Scholar]
  31. Yi Q., Scalley-Kim M. L., Alm E. J., Baker D. NMR characterization of residual structure in the denatured state of protein L. J Mol Biol. 2000 Jun 23;299(5):1341–1351. doi: 10.1006/jmbi.2000.3816. [DOI] [PubMed] [Google Scholar]
  32. Zhou H. X., Dill K. A. Stabilization of proteins in confined spaces. Biochemistry. 2001 Sep 25;40(38):11289–11293. doi: 10.1021/bi0155504. [DOI] [PubMed] [Google Scholar]
  33. Zhou H. X., Vijayakumar M. Modeling of protein conformational fluctuations in pKa predictions. J Mol Biol. 1997 Apr 11;267(4):1002–1011. doi: 10.1006/jmbi.1997.0895. [DOI] [PubMed] [Google Scholar]
  34. Zhou Huan-Xiang. A Gaussian-chain model for treating residual charge-charge interactions in the unfolded state of proteins. Proc Natl Acad Sci U S A. 2002 Mar 12;99(6):3569–3574. doi: 10.1073/pnas.052030599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Zhou Huan-Xiang. Residual electrostatic effects in the unfolded state of the N-terminal domain of L9 can be attributed to nonspecific nonlocal charge-charge interactions. Biochemistry. 2002 May 21;41(20):6533–6538. doi: 10.1021/bi025580m. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES