Abstract
The G-protein coupled receptor CCR5 is the main co-receptor for macrophage-tropic HIV-1 strains. I have built a structural model of the chemokine receptor CCR5 and used it to explain the binding and selectivity of the antagonist TAK779. Models of the extracellular (EC) domains of CCR5 have been constructed and used to rationalize current biological data on the binding of HIV-1 and chemokines. Residues spanning the transmembrane region of CCR5 have been modeled after rhodopsin, and their functional significance examined using the evolutionary trace method. The receptor cavity shares six residues with CC-chemokine receptors CCR1 through CCR4, while seven residues are unique to CCR5. The contribution of these residues to ligand binding and selectivity is tested by molecular docking simulations of TAK779 to CCR1, CCR2, and CCR5. TAK779 binds to CCR5 in the cavity formed by helices 1, 2, 3, and 7 with additional interactions with helices 5 and 6. TAK779 did not dock to either CCR1 or CCR2. The results are consistent with current site-directed mutagenesis data and with the observed selectivity of TAK779 for CCR5 over CCR1 and CCR2. The specific residues responsible for the observed selectivity are identified. The four EC regions of CCR5 have been modeled using constrained simulated annealing simulations. Applied dihedral angle constraints are representative of the secondary structure propensities of these regions. Tertiary interactions, in the form of distance constraints, are generated from available epitope mapping data. Analysis of the 250 simulated structures provides new insights to the design of experiments aimed at determining residue-residue contacts across the EC domains and for mapping CC-chemokines on the surface of the EC domains.
Full Text
The Full Text of this article is available as a PDF (854.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Attwood T. K., Findlay J. B. Fingerprinting G-protein-coupled receptors. Protein Eng. 1994 Feb;7(2):195–203. doi: 10.1093/protein/7.2.195. [DOI] [PubMed] [Google Scholar]
- Baba M., Nishimura O., Kanzaki N., Okamoto M., Sawada H., Iizawa Y., Shiraishi M., Aramaki Y., Okonogi K., Ogawa Y. A small-molecule, nonpeptide CCR5 antagonist with highly potent and selective anti-HIV-1 activity. Proc Natl Acad Sci U S A. 1999 May 11;96(10):5698–5703. doi: 10.1073/pnas.96.10.5698. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bairoch A., Apweiler R. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res. 2000 Jan 1;28(1):45–48. doi: 10.1093/nar/28.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baldwin J. M., Schertler G. F., Unger V. M. An alpha-carbon template for the transmembrane helices in the rhodopsin family of G-protein-coupled receptors. J Mol Biol. 1997 Sep 12;272(1):144–164. doi: 10.1006/jmbi.1997.1240. [DOI] [PubMed] [Google Scholar]
- Ballesteros J., Kitanovic S., Guarnieri F., Davies P., Fromme B. J., Konvicka K., Chi L., Millar R. P., Davidson J. S., Weinstein H. Functional microdomains in G-protein-coupled receptors. The conserved arginine-cage motif in the gonadotropin-releasing hormone receptor. J Biol Chem. 1998 Apr 24;273(17):10445–10453. doi: 10.1074/jbc.273.17.10445. [DOI] [PubMed] [Google Scholar]
- Befort K., Tabbara L., Kling D., Maigret B., Kieffer B. L. Role of aromatic transmembrane residues of the delta-opioid receptor in ligand recognition. J Biol Chem. 1996 Apr 26;271(17):10161–10168. doi: 10.1074/jbc.271.17.10161. [DOI] [PubMed] [Google Scholar]
- Berger E. A., Doms R. W., Fenyö E. M., Korber B. T., Littman D. R., Moore J. P., Sattentau Q. J., Schuitemaker H., Sodroski J., Weiss R. A. A new classification for HIV-1. Nature. 1998 Jan 15;391(6664):240–240. doi: 10.1038/34571. [DOI] [PubMed] [Google Scholar]
- Berman H. M., Westbrook J., Feng Z., Gilliland G., Bhat T. N., Weissig H., Shindyalov I. N., Bourne P. E. The Protein Data Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235–242. doi: 10.1093/nar/28.1.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blanpain C., Doranz B. J., Vakili J., Rucker J., Govaerts C., Baik S. S., Lorthioir O., Migeotte I., Libert F., Baleux F. Multiple charged and aromatic residues in CCR5 amino-terminal domain are involved in high affinity binding of both chemokines and HIV-1 Env protein. J Biol Chem. 1999 Dec 3;274(49):34719–34727. doi: 10.1074/jbc.274.49.34719. [DOI] [PubMed] [Google Scholar]
- Blanpain C., Lee B., Vakili J., Doranz B. J., Govaerts C., Migeotte I., Sharron M., Dupriez V., Vassart G., Doms R. W. Extracellular cysteines of CCR5 are required for chemokine binding, but dispensable for HIV-1 coreceptor activity. J Biol Chem. 1999 Jul 2;274(27):18902–18908. doi: 10.1074/jbc.274.27.18902. [DOI] [PubMed] [Google Scholar]
- Burritt J. B., Busse S. C., Gizachew D., Siemsen D. W., Quinn M. T., Bond C. W., Dratz E. A., Jesaitis A. J. Antibody imprint of a membrane protein surface. Phagocyte flavocytochrome b. J Biol Chem. 1998 Sep 18;273(38):24847–24852. doi: 10.1074/jbc.273.38.24847. [DOI] [PubMed] [Google Scholar]
- Colson A. O., Perlman J. H., Smolyar A., Gershengorn M. C., Osman R. Static and dynamic roles of extracellular loops in G-protein-coupled receptors: a mechanism for sequential binding of thyrotropin-releasing hormone to its receptor. Biophys J. 1998 Mar;74(3):1087–1100. doi: 10.1016/S0006-3495(98)77827-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cotecchia S., Rossier O., Fanelli F., Leonardi A., De Benedetti P. G. The alpha 1a and alpha 1b-adrenergic receptor subtypes: molecular mechanisms of receptor activation and of drug action. Pharm Acta Helv. 2000 Mar;74(2-3):173–179. doi: 10.1016/s0031-6865(99)00031-x. [DOI] [PubMed] [Google Scholar]
- Donnelly D., Overington J. P., Blundell T. L. The prediction and orientation of alpha-helices from sequence alignments: the combined use of environment-dependent substitution tables, Fourier transform methods and helix capping rules. Protein Eng. 1994 May;7(5):645–653. doi: 10.1093/protein/7.5.645. [DOI] [PubMed] [Google Scholar]
- Dragic T., Trkola A., Lin S. W., Nagashima K. A., Kajumo F., Zhao L., Olson W. C., Wu L., Mackay C. R., Allaway G. P. Amino-terminal substitutions in the CCR5 coreceptor impair gp120 binding and human immunodeficiency virus type 1 entry. J Virol. 1998 Jan;72(1):279–285. doi: 10.1128/jvi.72.1.279-285.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dragic T., Trkola A., Thompson D. A., Cormier E. G., Kajumo F. A., Maxwell E., Lin S. W., Ying W., Smith S. O., Sakmar T. P. A binding pocket for a small molecule inhibitor of HIV-1 entry within the transmembrane helices of CCR5. Proc Natl Acad Sci U S A. 2000 May 9;97(10):5639–5644. doi: 10.1073/pnas.090576697. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dunbrack R. L., Jr, Karplus M. Backbone-dependent rotamer library for proteins. Application to side-chain prediction. J Mol Biol. 1993 Mar 20;230(2):543–574. doi: 10.1006/jmbi.1993.1170. [DOI] [PubMed] [Google Scholar]
- Elling C. E., Raffetseder U., Nielsen S. M., Schwartz T. W. Disulfide bridge engineering in the tachykinin NK1 receptor. Biochemistry. 2000 Feb 1;39(4):667–675. doi: 10.1021/bi991777b. [DOI] [PubMed] [Google Scholar]
- Elling C. E., Thirstrup K., Nielsen S. M., Hjorth S. A., Schwartz T. W. Metal-ion sites as structural and functional probes of helix-helix interactions in 7TM receptors. Ann N Y Acad Sci. 1997 Apr 24;814:142–151. doi: 10.1111/j.1749-6632.1997.tb46152.x. [DOI] [PubMed] [Google Scholar]
- Farzan M., Choe H., Vaca L., Martin K., Sun Y., Desjardins E., Ruffing N., Wu L., Wyatt R., Gerard N. A tyrosine-rich region in the N terminus of CCR5 is important for human immunodeficiency virus type 1 entry and mediates an association between gp120 and CCR5. J Virol. 1998 Feb;72(2):1160–1164. doi: 10.1128/jvi.72.2.1160-1164.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fiser A., Do R. K., Sali A. Modeling of loops in protein structures. Protein Sci. 2000 Sep;9(9):1753–1773. doi: 10.1110/ps.9.9.1753. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Flanagan C. A., Zhou W., Chi L., Yuen T., Rodic V., Robertson D., Johnson M., Holland P., Millar R. P., Weinstein H. The functional microdomain in transmembrane helices 2 and 7 regulates expression, activation, and coupling pathways of the gonadotropin-releasing hormone receptor. J Biol Chem. 1999 Oct 8;274(41):28880–28886. doi: 10.1074/jbc.274.41.28880. [DOI] [PubMed] [Google Scholar]
- Genoud S., Kajumo F., Guo Y., Thompson D., Dragic T. CCR5-Mediated human immunodeficiency virus entry depends on an amino-terminal gp120-binding site and on the conformational integrity of all four extracellular domains. J Virol. 1999 Feb;73(2):1645–1648. doi: 10.1128/jvi.73.2.1645-1648.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Govaerts C., Blanpain C., Deupi X., Ballet S., Ballesteros J. A., Wodak S. J., Vassart G., Pardo L., Parmentier M. The TXP motif in the second transmembrane helix of CCR5. A structural determinant of chemokine-induced activation. J Biol Chem. 2001 Jan 25;276(16):13217–13225. doi: 10.1074/jbc.M011670200. [DOI] [PubMed] [Google Scholar]
- Govaerts C., Lefort A., Costagliola S., Wodak S. J., Ballesteros J. A., Van Sande J., Pardo L., Vassart G. A conserved Asn in transmembrane helix 7 is an on/off switch in the activation of the thyrotropin receptor. J Biol Chem. 2001 Apr 18;276(25):22991–22999. doi: 10.1074/jbc.M102244200. [DOI] [PubMed] [Google Scholar]
- Harpaz Y., Gerstein M., Chothia C. Volume changes on protein folding. Structure. 1994 Jul 15;2(7):641–649. doi: 10.1016/s0969-2126(00)00065-4. [DOI] [PubMed] [Google Scholar]
- Hill C. M., Kwon D., Jones M., Davis C. B., Marmon S., Daugherty B. L., DeMartino J. A., Springer M. S., Unutmaz D., Littman D. R. The amino terminus of human CCR5 is required for its function as a receptor for diverse human and simian immunodeficiency virus envelope glycoproteins. Virology. 1998 Sep 1;248(2):357–371. doi: 10.1006/viro.1998.9283. [DOI] [PubMed] [Google Scholar]
- Hoffman T. L., LaBranche C. C., Zhang W., Canziani G., Robinson J., Chaiken I., Hoxie J. A., Doms R. W. Stable exposure of the coreceptor-binding site in a CD4-independent HIV-1 envelope protein. Proc Natl Acad Sci U S A. 1999 May 25;96(11):6359–6364. doi: 10.1073/pnas.96.11.6359. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Howard O. M., Shirakawa A. K., Turpin J. A., Maynard A., Tobin G. J., Carrington M., Oppenheim J. J., Dean M. Naturally occurring CCR5 extracellular and transmembrane domain variants affect HIV-1 Co-receptor and ligand binding function. J Biol Chem. 1999 Jun 4;274(23):16228–16234. doi: 10.1074/jbc.274.23.16228. [DOI] [PubMed] [Google Scholar]
- Hubbell W. L., Cafiso D. S., Altenbach C. Identifying conformational changes with site-directed spin labeling. Nat Struct Biol. 2000 Sep;7(9):735–739. doi: 10.1038/78956. [DOI] [PubMed] [Google Scholar]
- Javadpour M. M., Eilers M., Groesbeek M., Smith S. O. Helix packing in polytopic membrane proteins: role of glycine in transmembrane helix association. Biophys J. 1999 Sep;77(3):1609–1618. doi: 10.1016/S0006-3495(99)77009-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Javitch J. A., Ballesteros J. A., Weinstein H., Chen J. A cluster of aromatic residues in the sixth membrane-spanning segment of the dopamine D2 receptor is accessible in the binding-site crevice. Biochemistry. 1998 Jan 27;37(4):998–1006. doi: 10.1021/bi972241y. [DOI] [PubMed] [Google Scholar]
- Javitch J. A., Fu D., Liapakis G., Chen J. Constitutive activation of the beta2 adrenergic receptor alters the orientation of its sixth membrane-spanning segment. J Biol Chem. 1997 Jul 25;272(30):18546–18549. doi: 10.1074/jbc.272.30.18546. [DOI] [PubMed] [Google Scholar]
- Johnson J. M., Church G. M. Predicting ligand-binding function in families of bacterial receptors. Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):3965–3970. doi: 10.1073/pnas.050580897. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kolchinsky P., Mirzabekov T., Farzan M., Kiprilov E., Cayabyab M., Mooney L. J., Choe H., Sodroski J. Adaptation of a CCR5-using, primary human immunodeficiency virus type 1 isolate for CD4-independent replication. J Virol. 1999 Oct;73(10):8120–8126. doi: 10.1128/jvi.73.10.8120-8126.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee B., Sharron M., Blanpain C., Doranz B. J., Vakili J., Setoh P., Berg E., Liu G., Guy H. R., Durell S. R. Epitope mapping of CCR5 reveals multiple conformational states and distinct but overlapping structures involved in chemokine and coreceptor function. J Biol Chem. 1999 Apr 2;274(14):9617–9626. doi: 10.1074/jbc.274.14.9617. [DOI] [PubMed] [Google Scholar]
- Li W., Liang S., Wang R., Lai L., Han Y. Exploring the conformational diversity of loops on conserved frameworks. Protein Eng. 1999 Dec;12(12):1075–1086. doi: 10.1093/protein/12.12.1075. [DOI] [PubMed] [Google Scholar]
- Liang M., Mallari C., Rosser M., Ng H. P., May K., Monahan S., Bauman J. G., Islam I., Ghannam A., Buckman B. Identification and characterization of a potent, selective, and orally active antagonist of the CC chemokine receptor-1. J Biol Chem. 2000 Jun 23;275(25):19000–19008. doi: 10.1074/jbc.M001222200. [DOI] [PubMed] [Google Scholar]
- Lichtarge O., Bourne H. R., Cohen F. E. An evolutionary trace method defines binding surfaces common to protein families. J Mol Biol. 1996 Mar 29;257(2):342–358. doi: 10.1006/jmbi.1996.0167. [DOI] [PubMed] [Google Scholar]
- Lu Z. L., Hulme E. C. A network of conserved intramolecular contacts defines the off-state of the transmembrane switch mechanism in a seven-transmembrane receptor. J Biol Chem. 2000 Feb 25;275(8):5682–5686. doi: 10.1074/jbc.275.8.5682. [DOI] [PubMed] [Google Scholar]
- Luo Z., Butcher D. J., Huang Z. Molecular modeling of interleukin-8 receptor beta and analysis of the receptor-ligand interaction. Protein Eng. 1997 Sep;10(9):1039–1045. doi: 10.1093/protein/10.9.1039. [DOI] [PubMed] [Google Scholar]
- McFadyen I. J., Metzger T. G., Paterlini M. G., Ferguson D. M. Exploring the unique pharmacology of a novel opioid receptor, ZFOR1, using molecular modeling and the 'message-address' concept. Protein Eng. 2001 Dec;14(12):953–960. doi: 10.1093/protein/14.12.953. [DOI] [PubMed] [Google Scholar]
- Metzger T. G., Paterlini M. G., Ferguson D. M., Portoghese P. S. Investigation of the selectivity of oxymorphone- and naltrexone-derived ligands via site-directed mutagenesis of opioid receptors: exploring the "address" recognition locus. J Med Chem. 2001 Mar 15;44(6):857–862. doi: 10.1021/jm000381r. [DOI] [PubMed] [Google Scholar]
- Metzger T. G., Paterlini M. G., Portoghese P. S., Ferguson D. M. Application of the message-address concept to the docking of naltrexone and selective naltrexone-derived opioid antagonists into opioid receptor models. Neurochem Res. 1996 Nov;21(11):1287–1294. doi: 10.1007/BF02532369. [DOI] [PubMed] [Google Scholar]
- Mirzadegan T., Diehl F., Ebi B., Bhakta S., Polsky I., McCarley D., Mulkins M., Weatherhead G. S., Lapierre J. M., Dankwardt J. Identification of the binding site for a novel class of CCR2b chemokine receptor antagonists: binding to a common chemokine receptor motif within the helical bundle. J Biol Chem. 2000 Aug 18;275(33):25562–25571. doi: 10.1074/jbc.M000692200. [DOI] [PubMed] [Google Scholar]
- Mizobe T., Maze M., Lam V., Suryanarayana S., Kobilka B. K. Arrangement of transmembrane domains in adrenergic receptors. Similarity to bacteriorhodopsin. J Biol Chem. 1996 Feb 2;271(5):2387–2389. doi: 10.1074/jbc.271.5.2387. [DOI] [PubMed] [Google Scholar]
- Moro S., Hoffmann C., Jacobson K. A. Role of the extracellular loops of G protein-coupled receptors in ligand recognition: a molecular modeling study of the human P2Y1 receptor. Biochemistry. 1999 Mar 23;38(12):3498–3507. doi: 10.1021/bi982369v. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nardese V., Longhi R., Polo S., Sironi F., Arcelloni C., Paroni R., DeSantis C., Sarmientos P., Rizzi M., Bolognesi M. Structural determinants of CCR5 recognition and HIV-1 blockade in RANTES. Nat Struct Biol. 2001 Jul;8(7):611–615. doi: 10.1038/89653. [DOI] [PubMed] [Google Scholar]
- Naya A., Sagara Y., Ohwaki K., Saeki T., Ichikawa D., Iwasawa Y., Noguchi K., Ohtake N. Design, synthesis, and discovery of a novel CCR1 antagonist. J Med Chem. 2001 Apr 26;44(9):1429–1435. doi: 10.1021/jm0004244. [DOI] [PubMed] [Google Scholar]
- Ng H. P., May K., Bauman J. G., Ghannam A., Islam I., Liang M., Horuk R., Hesselgesser J., Snider R. M., Perez H. D. Discovery of novel non-peptide CCR1 receptor antagonists. J Med Chem. 1999 Nov 4;42(22):4680–4694. doi: 10.1021/jm990316l. [DOI] [PubMed] [Google Scholar]
- Olson W. C., Rabut G. E., Nagashima K. A., Tran D. N., Anselma D. J., Monard S. P., Segal J. P., Thompson D. A., Kajumo F., Guo Y. Differential inhibition of human immunodeficiency virus type 1 fusion, gp120 binding, and CC-chemokine activity by monoclonal antibodies to CCR5. J Virol. 1999 May;73(5):4145–4155. doi: 10.1128/jvi.73.5.4145-4155.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Overington J., Donnelly D., Johnson M. S., Sali A., Blundell T. L. Environment-specific amino acid substitution tables: tertiary templates and prediction of protein folds. Protein Sci. 1992 Feb;1(2):216–226. doi: 10.1002/pro.5560010203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palczewski K., Kumasaka T., Hori T., Behnke C. A., Motoshima H., Fox B. A., Le Trong I., Teller D. C., Okada T., Stenkamp R. E. Crystal structure of rhodopsin: A G protein-coupled receptor. Science. 2000 Aug 4;289(5480):739–745. doi: 10.1126/science.289.5480.739. [DOI] [PubMed] [Google Scholar]
- Paterlini G., Portoghese P. S., Ferguson D. M. Molecular simulation of dynorphin A-(1-10) binding to extracellular loop 2 of the kappa-opioid receptor. A model for receptor activation. J Med Chem. 1997 Sep 26;40(20):3254–3262. doi: 10.1021/jm970252j. [DOI] [PubMed] [Google Scholar]
- Pogozheva I. D., Lomize A. L., Mosberg H. I. Opioid receptor three-dimensional structures from distance geometry calculations with hydrogen bonding constraints. Biophys J. 1998 Aug;75(2):612–634. doi: 10.1016/S0006-3495(98)77552-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prieto J., Serrano L. C-capping and helix stability: the Pro C-capping motif. J Mol Biol. 1997 Nov 28;274(2):276–288. doi: 10.1006/jmbi.1997.1322. [DOI] [PubMed] [Google Scholar]
- Rabut G. E., Konner J. A., Kajumo F., Moore J. P., Dragic T. Alanine substitutions of polar and nonpolar residues in the amino-terminal domain of CCR5 differently impair entry of macrophage- and dualtropic isolates of human immunodeficiency virus type 1. J Virol. 1998 Apr;72(4):3464–3468. doi: 10.1128/jvi.72.4.3464-3468.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rizzuto C. D., Wyatt R., Hernández-Ramos N., Sun Y., Kwong P. D., Hendrickson W. A., Sodroski J. A conserved HIV gp120 glycoprotein structure involved in chemokine receptor binding. Science. 1998 Jun 19;280(5371):1949–1953. doi: 10.1126/science.280.5371.1949. [DOI] [PubMed] [Google Scholar]
- Robertson D. L., Anderson J. P., Bradac J. A., Carr J. K., Foley B., Funkhouser R. K., Gao F., Hahn B. H., Kalish M. L., Kuiken C. HIV-1 nomenclature proposal. Science. 2000 Apr 7;288(5463):55–56. doi: 10.1126/science.288.5463.55d. [DOI] [PubMed] [Google Scholar]
- Sabroe I., Peck M. J., Van Keulen B. J., Jorritsma A., Simmons G., Clapham P. R., Williams T. J., Pease J. E. A small molecule antagonist of chemokine receptors CCR1 and CCR3. Potent inhibition of eosinophil function and CCR3-mediated HIV-1 entry. J Biol Chem. 2000 Aug 25;275(34):25985–25992. doi: 10.1074/jbc.M908864199. [DOI] [PubMed] [Google Scholar]
- Sali A., Blundell T. L. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993 Dec 5;234(3):779–815. doi: 10.1006/jmbi.1993.1626. [DOI] [PubMed] [Google Scholar]
- Samson M., LaRosa G., Libert F., Paindavoine P., Detheux M., Vassart G., Parmentier M. The second extracellular loop of CCR5 is the major determinant of ligand specificity. J Biol Chem. 1997 Oct 3;272(40):24934–24941. doi: 10.1074/jbc.272.40.24934. [DOI] [PubMed] [Google Scholar]
- Sankararamakrishnan R., Vishveshwara S. Geometry of proline-containing alpha-helices in proteins. Int J Pept Protein Res. 1992 Apr;39(4):356–363. doi: 10.1111/j.1399-3011.1992.tb01595.x. [DOI] [PubMed] [Google Scholar]
- Simpson M. M., Ballesteros J. A., Chiappa V., Chen J., Suehiro M., Hartman D. S., Godel T., Snyder L. A., Sakmar T. P., Javitch J. A. Dopamine D4/D2 receptor selectivity is determined by A divergent aromatic microdomain contained within the second, third, and seventh membrane-spanning segments. Mol Pharmacol. 1999 Dec;56(6):1116–1126. doi: 10.1124/mol.56.6.1116. [DOI] [PubMed] [Google Scholar]
- Sowa M. E., He W., Wensel T. G., Lichtarge O. A regulator of G protein signaling interaction surface linked to effector specificity. Proc Natl Acad Sci U S A. 2000 Feb 15;97(4):1483–1488. doi: 10.1073/pnas.030409597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strader C. D., Fong T. M., Tota M. R., Underwood D., Dixon R. A. Structure and function of G protein-coupled receptors. Annu Rev Biochem. 1994;63:101–132. doi: 10.1146/annurev.bi.63.070194.000533. [DOI] [PubMed] [Google Scholar]
- Struthers M., Yu H., Kono M., Oprian D. D. Tertiary interactions between the fifth and sixth transmembrane segments of rhodopsin. Biochemistry. 1999 May 18;38(20):6597–6603. doi: 10.1021/bi9902384. [DOI] [PubMed] [Google Scholar]
- Subramaniam S. The Biology Workbench--a seamless database and analysis environment for the biologist. Proteins. 1998 Jul 1;32(1):1–2. [PubMed] [Google Scholar]
- Subramanian G., Paterlini M. G., Larson D. L., Portoghese P. S., Ferguson D. M. Conformational analysis and automated receptor docking of selective arylacetamide-based kappa-opioid agonists. J Med Chem. 1998 Nov 19;41(24):4777–4789. doi: 10.1021/jm9803166. [DOI] [PubMed] [Google Scholar]
- Subramanian G., Paterlini M. G., Portoghese P. S., Ferguson D. M. Molecular docking reveals a novel binding site model for fentanyl at the mu-opioid receptor. J Med Chem. 2000 Feb 10;43(3):381–391. doi: 10.1021/jm9903702. [DOI] [PubMed] [Google Scholar]
- Surratt C. K., Johnson P. S., Moriwaki A., Seidleck B. K., Blaschak C. J., Wang J. B., Uhl G. R. -mu opiate receptor. Charged transmembrane domain amino acids are critical for agonist recognition and intrinsic activity. J Biol Chem. 1994 Aug 12;269(32):20548–20553. [PubMed] [Google Scholar]
- Thirstrup K., Elling C. E., Hjorth S. A., Schwartz T. W. Construction of a high affinity zinc switch in the kappa-opioid receptor. J Biol Chem. 1996 Apr 5;271(14):7875–7878. doi: 10.1074/jbc.271.14.7875. [DOI] [PubMed] [Google Scholar]
- Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Unger V. M., Hargrave P. A., Baldwin J. M., Schertler G. F. Arrangement of rhodopsin transmembrane alpha-helices. Nature. 1997 Sep 11;389(6647):203–206. doi: 10.1038/38316. [DOI] [PubMed] [Google Scholar]
- Viguera A. R., Serrano L. Stable proline box motif at the N-terminal end of alpha-helices. Protein Sci. 1999 Sep;8(9):1733–1742. doi: 10.1110/ps.8.9.1733. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu L., Gerard N. P., Wyatt R., Choe H., Parolin C., Ruffing N., Borsetti A., Cardoso A. A., Desjardin E., Newman W. CD4-induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine receptor CCR-5. Nature. 1996 Nov 14;384(6605):179–183. doi: 10.1038/384179a0. [DOI] [PubMed] [Google Scholar]
- Zhang Chao, Hou Jingtong, Kim Sung-Hou. Fold prediction of helical proteins using torsion angle dynamics and predicted restraints. Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3581–3585. doi: 10.1073/pnas.052003799. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang Li, DeHaven Robert N., Goodman Murray. NMR and modeling studies of a synthetic extracellular loop II of the kappa opioid receptor in a DPC micelle. Biochemistry. 2002 Jan 8;41(1):61–68. doi: 10.1021/bi0117955. [DOI] [PubMed] [Google Scholar]
- Zhou N., Luo Z., Hall J. W., Luo J., Han X., Huang Z. Molecular modeling and site-directed mutagenesis of CCR5 reveal residues critical for chemokine binding and signal transduction. Eur J Immunol. 2000 Jan;30(1):164–173. doi: 10.1002/1521-4141(200001)30:1<164::AID-IMMU164>3.0.CO;2-X. [DOI] [PubMed] [Google Scholar]
- Zhou W., Flanagan C., Ballesteros J. A., Konvicka K., Davidson J. S., Weinstein H., Millar R. P., Sealfon S. C. A reciprocal mutation supports helix 2 and helix 7 proximity in the gonadotropin-releasing hormone receptor. Mol Pharmacol. 1994 Feb;45(2):165–170. [PubMed] [Google Scholar]
- van Vlijmen H. W., Karplus M. PDB-based protein loop prediction: parameters for selection and methods for optimization. J Mol Biol. 1997 Apr 11;267(4):975–1001. doi: 10.1006/jmbi.1996.0857. [DOI] [PubMed] [Google Scholar]