Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Dec;83(6):3097–3112. doi: 10.1016/S0006-3495(02)75314-9

Molecular dynamics investigation of primary photoinduced events in the activation of rhodopsin.

Jan Saam 1, Emad Tajkhorshid 1, Shigehiko Hayashi 1, Klaus Schulten 1
PMCID: PMC1302389  PMID: 12496081

Abstract

Retinal cis-trans isomerization and early relaxation steps have been studied in a 10-ns molecular dynamics simulation of a fully hydrated model of membrane-embedded rhodopsin. The isomerization, induced by transiently switching the potential energy function governing the C(11)==C(12) dihedral angle of retinal, completes within 150 fs and yields a strongly distorted retinal. The most significant conformational changes in the binding pocket are straightening of retinal's polyene chain and separation of its beta-ionone ring from Trp-265. In the following 500 ps, transition of 6s-cis to 6s-trans retinal and dramatic changes in the hydrogen bonding network of the binding pocket involving the counterion for the protonated Schiff base, Glu-113, occur. Furthermore, the energy initially stored internally in the distorted retinal is transformed into nonbonding interactions of retinal with its environment. During the following 10 ns, increased mobilities of some parts of the protein, such as the kinked regions of the helices, mainly helix VI, and the intracellular loop I2, were observed, as well as transient structural changes involving the conserved salt bridge between Glu-134 and Arg-135. These features prepare the protein for major structural transformations achieved later in the photocycle. Retinal's motion, in particular, can be compared to an opening turnstile freeing the way for the proposed rotation of helix VI. This was demonstrated by a steered molecular dynamics simulation in which an applied torque enforced the rotation of helix VI.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altenbach C., Klein-Seetharaman J., Cai K., Khorana H. G., Hubbell W. L. Structure and function in rhodopsin: mapping light-dependent changes in distance between residue 316 in helix 8 and residues in the sequence 60-75, covering the cytoplasmic end of helices TM1 and TM2 and their connection loop CL1. Biochemistry. 2001 Dec 25;40(51):15493–15500. doi: 10.1021/bi011545o. [DOI] [PubMed] [Google Scholar]
  2. Arimoto R., Kisselev O. G., Makara G. M., Marshall G. R. Rhodopsin-transducin interface: studies with conformationally constrained peptides. Biophys J. 2001 Dec;81(6):3285–3293. doi: 10.1016/S0006-3495(01)75962-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arnis S., Fahmy K., Hofmann K. P., Sakmar T. P. A conserved carboxylic acid group mediates light-dependent proton uptake and signaling by rhodopsin. J Biol Chem. 1994 Sep 30;269(39):23879–23881. [PubMed] [Google Scholar]
  4. Bockaert J., Pin J. P. Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J. 1999 Apr 1;18(7):1723–1729. doi: 10.1093/emboj/18.7.1723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Borhan B., Souto M. L., Imai H., Shichida Y., Nakanishi K. Movement of retinal along the visual transduction path. Science. 2000 Jun 23;288(5474):2209–2212. doi: 10.1126/science.288.5474.2209. [DOI] [PubMed] [Google Scholar]
  6. Choi Gregory, Landin Judith, Galan Jhenny Flor, Birge Robert R., Albert Arlene D., Yeagle Philip L. Structural studies of metarhodopsin II, the activated form of the G-protein coupled receptor, rhodopsin. Biochemistry. 2002 Jun 11;41(23):7318–7324. doi: 10.1021/bi025507w. [DOI] [PubMed] [Google Scholar]
  7. Cohen G. B., Oprian D. D., Robinson P. R. Mechanism of activation and inactivation of opsin: role of Glu113 and Lys296. Biochemistry. 1992 Dec 22;31(50):12592–12601. doi: 10.1021/bi00165a008. [DOI] [PubMed] [Google Scholar]
  8. Creemers Alain F. L., Kiihne Suzanne, Bovee-Geurts Petra H. M., DeGrip Willem J., Lugtenburg Johan, de Groot Huub J. M. (1)H and (13)C MAS NMR evidence for pronounced ligand-protein interactions involving the ionone ring of the retinylidene chromophore in rhodopsin. Proc Natl Acad Sci U S A. 2002 Jul 1;99(14):9101–9106. doi: 10.1073/pnas.112677599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. De Lean A., Stadel J. M., Lefkowitz R. J. A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled beta-adrenergic receptor. J Biol Chem. 1980 Aug 10;255(15):7108–7117. [PubMed] [Google Scholar]
  10. Ebrey T. G. pKa of the protonated Schiff base of visual pigments. Methods Enzymol. 2000;315:196–207. doi: 10.1016/s0076-6879(00)15844-6. [DOI] [PubMed] [Google Scholar]
  11. Fahmy K., Jäger F., Beck M., Zvyaga T. A., Sakmar T. P., Siebert F. Protonation states of membrane-embedded carboxylic acid groups in rhodopsin and metarhodopsin II: a Fourier-transform infrared spectroscopy study of site-directed mutants. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10206–10210. doi: 10.1073/pnas.90.21.10206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fahmy K., Sakmar T. P., Siebert F. Transducin-dependent protonation of glutamic acid 134 in rhodopsin. Biochemistry. 2000 Aug 29;39(34):10607–10612. doi: 10.1021/bi000912d. [DOI] [PubMed] [Google Scholar]
  13. Farrens D. L., Altenbach C., Yang K., Hubbell W. L., Khorana H. G. Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science. 1996 Nov 1;274(5288):768–770. doi: 10.1126/science.274.5288.768. [DOI] [PubMed] [Google Scholar]
  14. Fong S. L., Tsin A. T., Bridges C. D., Liou G. I. Detergents for extraction of visual pigments: types, solubilization, and stability. Methods Enzymol. 1982;81:133–140. doi: 10.1016/s0076-6879(82)81022-7. [DOI] [PubMed] [Google Scholar]
  15. Fujimoto Y., Ishihara J., Maki S., Fujioka N., Wang T., Furuta T., Fishkin N., Borhan B., Berova N., Nakanishi K. On the bioactive conformation of the rhodopsin chromophore: absolute sense of twist around the 6-s-cis bond. Chemistry. 2001 Oct 1;7(19):4198–4204. doi: 10.1002/1521-3765(20011001)7:19<4198::aid-chem4198>3.0.co;2-x. [DOI] [PubMed] [Google Scholar]
  16. Ganter U. M., Gärtner W., Siebert F. Rhodopsin-lumirhodopsin phototransition of bovine rhodopsin investigated by Fourier transform infrared difference spectroscopy. Biochemistry. 1988 Sep 20;27(19):7480–7488. doi: 10.1021/bi00419a046. [DOI] [PubMed] [Google Scholar]
  17. Gether U., Kobilka B. K. G protein-coupled receptors. II. Mechanism of agonist activation. J Biol Chem. 1998 Jul 17;273(29):17979–17982. doi: 10.1074/jbc.273.29.17979. [DOI] [PubMed] [Google Scholar]
  18. González-Luque R., Garavelli M., Bernardi F., Merchán M., Robb M. A., Olivucci M. Computational evidence in favor of a two-state, two-mode model of the retinal chromophore photoisomerization. Proc Natl Acad Sci U S A. 2000 Aug 15;97(17):9379–9384. doi: 10.1073/pnas.97.17.9379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gröbner G., Burnett I. J., Glaubitz C., Choi G., Mason A. J., Watts A. Observations of light-induced structural changes of retinal within rhodopsin. Nature. 2000 Jun 15;405(6788):810–813. doi: 10.1038/35015604. [DOI] [PubMed] [Google Scholar]
  20. Han M., Groesbeek M., Sakmar T. P., Smith S. O. The C9 methyl group of retinal interacts with glycine-121 in rhodopsin. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13442–13447. doi: 10.1073/pnas.94.25.13442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hayashi Shigehiko, Tajkhorshid Emad, Schulten Klaus. Structural changes during the formation of early intermediates in the bacteriorhodopsin photocycle. Biophys J. 2002 Sep;83(3):1281–1297. doi: 10.1016/S0006-3495(02)73900-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Humphrey W., Dalke A., Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996 Feb;14(1):33-8, 27-8. doi: 10.1016/0263-7855(96)00018-5. [DOI] [PubMed] [Google Scholar]
  23. Humphrey W., Lu H., Logunov I., Werner H. J., Schulten K. Three electronic state model of the primary phototransformation of bacteriorhodopsin. Biophys J. 1998 Oct;75(4):1689–1699. doi: 10.1016/S0006-3495(98)77611-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Imamoto Y., Sakai M., Katsuta Y., Wada A., Ito M., Shichida Y. Structure around C6-C7 bond of the chromophore in bathorhodopsin: low-temperature spectroscopy of 6s-cis-locked bicyclic rhodopsin analogs. Biochemistry. 1996 May 21;35(20):6257–6262. doi: 10.1021/bi9519359. [DOI] [PubMed] [Google Scholar]
  25. Isralewitz B., Gao M., Schulten K. Steered molecular dynamics and mechanical functions of proteins. Curr Opin Struct Biol. 2001 Apr;11(2):224–230. doi: 10.1016/s0959-440x(00)00194-9. [DOI] [PubMed] [Google Scholar]
  26. Isralewitz B., Izrailev S., Schulten K. Binding pathway of retinal to bacterio-opsin: a prediction by molecular dynamics simulations. Biophys J. 1997 Dec;73(6):2972–2979. doi: 10.1016/S0006-3495(97)78326-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Jang G. F., Kuksa V., Filipek S., Bartl F., Ritter E., Gelb M. H., Hofmann K. P., Palczewski K. Mechanism of rhodopsin activation as examined with ring-constrained retinal analogs and the crystal structure of the ground state protein. J Biol Chem. 2001 Apr 20;276(28):26148–26153. doi: 10.1074/jbc.M102212200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Jensen Morten Ø, Park Sanghyun, Tajkhorshid Emad, Schulten Klaus. Energetics of glycerol conduction through aquaglyceroporin GlpF. Proc Natl Acad Sci U S A. 2002 May 7;99(10):6731–6736. doi: 10.1073/pnas.102649299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kandori H., Yamazaki Y., Shichida Y., Raap J., Lugtenburg J., Belenky M., Herzfeld J. Tight Asp-85--Thr-89 association during the pump switch of bacteriorhodopsin. Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1571–1576. doi: 10.1073/pnas.98.4.1571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Lansing Jonathan C., Hohwy Morten, Jaroniec Christopher P., Creemers A. F. L., Lugtenburg Johan, Herzfeld Judith, Griffin Robert G. Chromophore distortions in the bacteriorhodopsin photocycle: evolution of the H-C14-C15-H dihedral angle measured by solid-state NMR. Biochemistry. 2002 Jan 15;41(2):431–438. doi: 10.1021/bi011529r. [DOI] [PubMed] [Google Scholar]
  31. Lewis J. W., Fan G. B., Sheves M., Szundi I., Kliger D. S. Steric barrier to bathorhodopsin decay in 5-demethyl and mesityl analogues of rhodopsin. J Am Chem Soc. 2001 Oct 17;123(41):10024–10029. doi: 10.1021/ja010724q. [DOI] [PubMed] [Google Scholar]
  32. Lu H., Schulten K. The key event in force-induced unfolding of Titin's immunoglobulin domains. Biophys J. 2000 Jul;79(1):51–65. doi: 10.1016/S0006-3495(00)76273-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Mollevanger L. C., Kentgens A. P., Pardoen J. A., Courtin J. M., Veeman W. S., Lugtenburg J., de Grip W. J. High-resolution solid-state 13C-NMR study of carbons C-5 and C-12 of the chromophore of bovine rhodopsin. Evidence for a 6-S-cis conformation with negative-charge perturbation near C-12. Eur J Biochem. 1987 Feb 16;163(1):9–14. doi: 10.1111/j.1432-1033.1987.tb10729.x. [DOI] [PubMed] [Google Scholar]
  34. Nina M., Roux B., Smith J. C. Functional interactions in bacteriorhodopsin: a theoretical analysis of retinal hydrogen bonding with water. Biophys J. 1995 Jan;68(1):25–39. doi: 10.1016/S0006-3495(95)80184-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Okada Tetsuji, Fujiyoshi Yoshinori, Silow Maria, Navarro Javier, Landau Ehud M., Shichida Yoshinori. Functional role of internal water molecules in rhodopsin revealed by X-ray crystallography. Proc Natl Acad Sci U S A. 2002 Apr 23;99(9):5982–5987. doi: 10.1073/pnas.082666399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Palczewski K., Kumasaka T., Hori T., Behnke C. A., Motoshima H., Fox B. A., Le Trong I., Teller D. C., Okada T., Stenkamp R. E. Crystal structure of rhodopsin: A G protein-coupled receptor. Science. 2000 Aug 4;289(5480):739–745. doi: 10.1126/science.289.5480.739. [DOI] [PubMed] [Google Scholar]
  37. Pan D., Mathies R. A. Chromophore structure in lumirhodopsin and metarhodopsin I by time-resolved resonance Raman microchip spectroscopy. Biochemistry. 2001 Jul 3;40(26):7929–7936. doi: 10.1021/bi010670x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Pin J. P., Bockaert J. Get receptive to metabotropic glutamate receptors. Curr Opin Neurobiol. 1995 Jun;5(3):342–349. doi: 10.1016/0959-4388(95)80047-6. [DOI] [PubMed] [Google Scholar]
  39. Robinson P. R., Cohen G. B., Zhukovsky E. A., Oprian D. D. Constitutively active mutants of rhodopsin. Neuron. 1992 Oct;9(4):719–725. doi: 10.1016/0896-6273(92)90034-b. [DOI] [PubMed] [Google Scholar]
  40. Roux B., Nina M., Pomès R., Smith J. C. Thermodynamic stability of water molecules in the bacteriorhodopsin proton channel: a molecular dynamics free energy perturbation study. Biophys J. 1996 Aug;71(2):670–681. doi: 10.1016/S0006-3495(96)79267-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Royant A., Nollert P., Edman K., Neutze R., Landau E. M., Pebay-Peyroula E., Navarro J. X-ray structure of sensory rhodopsin II at 2.1-A resolution. Proc Natl Acad Sci U S A. 2001 Aug 14;98(18):10131–10136. doi: 10.1073/pnas.181203898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Sakmar T. P., Franke R. R., Khorana H. G. Glutamic acid-113 serves as the retinylidene Schiff base counterion in bovine rhodopsin. Proc Natl Acad Sci U S A. 1989 Nov;86(21):8309–8313. doi: 10.1073/pnas.86.21.8309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Schoenlein R. W., Peteanu L. A., Mathies R. A., Shank C. V. The first step in vision: femtosecond isomerization of rhodopsin. Science. 1991 Oct 18;254(5030):412–415. doi: 10.1126/science.1925597. [DOI] [PubMed] [Google Scholar]
  44. Sheikh S. P., Zvyaga T. A., Lichtarge O., Sakmar T. P., Bourne H. R. Rhodopsin activation blocked by metal-ion-binding sites linking transmembrane helices C and F. Nature. 1996 Sep 26;383(6598):347–350. doi: 10.1038/383347a0. [DOI] [PubMed] [Google Scholar]
  45. Singh D., Hudson B. S., Middleton C., Birge R. R. Conformation and orientation of the retinyl chromophore in rhodopsin: a critical evaluation of recent NMR data on the basis of theoretical calculations results in a minimum energy structure consistent with all experimental data. Biochemistry. 2001 Apr 10;40(14):4201–4204. doi: 10.1021/bi001911o. [DOI] [PubMed] [Google Scholar]
  46. Smith S. O., Palings I., Copié V., Raleigh D. P., Courtin J., Pardoen J. A., Lugtenburg J., Mathies R. A., Griffin R. G. Low-temperature solid-state 13C NMR studies of the retinal chromophore in rhodopsin. Biochemistry. 1987 Mar 24;26(6):1606–1611. doi: 10.1021/bi00380a018. [DOI] [PubMed] [Google Scholar]
  47. Spengler D., Waeber C., Pantaloni C., Holsboer F., Bockaert J., Seeburg P. H., Journot L. Differential signal transduction by five splice variants of the PACAP receptor. Nature. 1993 Sep 9;365(6442):170–175. doi: 10.1038/365170a0. [DOI] [PubMed] [Google Scholar]
  48. Tajkhorshid E., Baudry J., Schulten K., Suhai S. Molecular dynamics study of the nature and origin of retinal's twisted structure in bacteriorhodopsin. Biophys J. 2000 Feb;78(2):683–693. doi: 10.1016/S0006-3495(00)76626-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Teller D. C., Okada T., Behnke C. A., Palczewski K., Stenkamp R. E. Advances in determination of a high-resolution three-dimensional structure of rhodopsin, a model of G-protein-coupled receptors (GPCRs). Biochemistry. 2001 Jul 3;40(26):7761–7772. doi: 10.1021/bi0155091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Warshel A. Bicycle-pedal model for the first step in the vision process. Nature. 1976 Apr 22;260(5553):679–683. doi: 10.1038/260679a0. [DOI] [PubMed] [Google Scholar]
  51. Warshel A., Parson W. W. Dynamics of biochemical and biophysical reactions: insight from computer simulations. Q Rev Biophys. 2001 Nov;34(4):563–679. doi: 10.1017/s0033583501003730. [DOI] [PubMed] [Google Scholar]
  52. Wess J. G-protein-coupled receptors: molecular mechanisms involved in receptor activation and selectivity of G-protein recognition. FASEB J. 1997 Apr;11(5):346–354. [PubMed] [Google Scholar]
  53. Yu H., Kono M., McKee T. D., Oprian D. D. A general method for mapping tertiary contacts between amino acid residues in membrane-embedded proteins. Biochemistry. 1995 Nov 21;34(46):14963–14969. doi: 10.1021/bi00046a002. [DOI] [PubMed] [Google Scholar]
  54. Zhang L., Hermans J. Hydrophilicity of cavities in proteins. Proteins. 1996 Apr;24(4):433–438. doi: 10.1002/(SICI)1097-0134(199604)24:4<433::AID-PROT3>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
  55. Zhukovsky E. A., Oprian D. D. Effect of carboxylic acid side chains on the absorption maximum of visual pigments. Science. 1989 Nov 17;246(4932):928–930. doi: 10.1126/science.2573154. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES