Abstract
The mechanical sensitivity of hair cells, the sensory receptors of the vestibular and auditory systems, is maintained by adaptation, which resets the transducer to cancel the effects of static stimuli. Adaptation motors in hair cells can be experimentally activated by externally applying a transduction channel blocker to the hair bundle, causing the hair bundle to move in the negative direction. We studied the variance in the position of the hair bundle during these displacements and found that it increases as the bundle moves to its new position. Often the variance peaks, and then declines to a steady-state value. We describe both displacement and variance with a model in which a motor acting on the bundle takes approximately 3.6-nm steps whose frequency (approximately 22 s(-1)) declines with the motor's load.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Assad J. A., Hacohen N., Corey D. P. Voltage dependence of adaptation and active bundle movement in bullfrog saccular hair cells. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2918–2922. doi: 10.1073/pnas.86.8.2918. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Assad J. A., Shepherd G. M., Corey D. P. Tip-link integrity and mechanical transduction in vertebrate hair cells. Neuron. 1991 Dec;7(6):985–994. doi: 10.1016/0896-6273(91)90343-x. [DOI] [PubMed] [Google Scholar]
- Crevel I., Carter N., Schliwa M., Cross R. Coupled chemical and mechanical reaction steps in a processive Neurospora kinesin. EMBO J. 1999 Nov 1;18(21):5863–5872. doi: 10.1093/emboj/18.21.5863. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Denk W., Keolian R. M., Webb W. W. Mechanical response of frog saccular hair bundles to the aminoglycoside block of mechanoelectrical transduction. J Neurophysiol. 1992 Sep;68(3):927–932. doi: 10.1152/jn.1992.68.3.927. [DOI] [PubMed] [Google Scholar]
- Denk W., Webb W. W., Hudspeth A. J. Mechanical properties of sensory hair bundles are reflected in their Brownian motion measured with a laser differential interferometer. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5371–5375. doi: 10.1073/pnas.86.14.5371. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eatock R. A. Adaptation in hair cells. Annu Rev Neurosci. 2000;23:285–314. doi: 10.1146/annurev.neuro.23.1.285. [DOI] [PubMed] [Google Scholar]
- García J. A., Yee A. G., Gillespie P. G., Corey D. P. Localization of myosin-Ibeta near both ends of tip links in frog saccular hair cells. J Neurosci. 1998 Nov 1;18(21):8637–8647. doi: 10.1523/JNEUROSCI.18-21-08637.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gillespie P. G., Corey D. P. Myosin and adaptation by hair cells. Neuron. 1997 Nov;19(5):955–958. doi: 10.1016/s0896-6273(00)80387-6. [DOI] [PubMed] [Google Scholar]
- Gillespie P. G., Gillespie S. K., Mercer J. A., Shah K., Shokat K. M. Engineering of the myosin-ibeta nucleotide-binding pocket to create selective sensitivity to N(6)-modified ADP analogs. J Biol Chem. 1999 Oct 29;274(44):31373–31381. doi: 10.1074/jbc.274.44.31373. [DOI] [PubMed] [Google Scholar]
- Gillespie P. G., Walker R. G. Molecular basis of mechanosensory transduction. Nature. 2001 Sep 13;413(6852):194–202. doi: 10.1038/35093011. [DOI] [PubMed] [Google Scholar]
- Hacohen N., Assad J. A., Smith W. J., Corey D. P. Regulation of tension on hair-cell transduction channels: displacement and calcium dependence. J Neurosci. 1989 Nov;9(11):3988–3997. doi: 10.1523/JNEUROSCI.09-11-03988.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holt J. R., Corey D. P. Two mechanisms for transducer adaptation in vertebrate hair cells. Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):11730–11735. doi: 10.1073/pnas.97.22.11730. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holt Jeffrey R., Gillespie Susan K. H., Provance D. William, Shah Kavita, Shokat Kevan M., Corey David P., Mercer John A., Gillespie Peter G. A chemical-genetic strategy implicates myosin-1c in adaptation by hair cells. Cell. 2002 Feb 8;108(3):371–381. doi: 10.1016/s0092-8674(02)00629-3. [DOI] [PubMed] [Google Scholar]
- Howard J., Hudspeth A. J. Compliance of the hair bundle associated with gating of mechanoelectrical transduction channels in the bullfrog's saccular hair cell. Neuron. 1988 May;1(3):189–199. doi: 10.1016/0896-6273(88)90139-0. [DOI] [PubMed] [Google Scholar]
- Howard J., Hudspeth A. J. Mechanical relaxation of the hair bundle mediates adaptation in mechanoelectrical transduction by the bullfrog's saccular hair cell. Proc Natl Acad Sci U S A. 1987 May;84(9):3064–3068. doi: 10.1073/pnas.84.9.3064. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Howard J., Roberts W. M., Hudspeth A. J. Mechanoelectrical transduction by hair cells. Annu Rev Biophys Biophys Chem. 1988;17:99–124. doi: 10.1146/annurev.bb.17.060188.000531. [DOI] [PubMed] [Google Scholar]
- Hudspeth A. J., Lewis R. S. A model for electrical resonance and frequency tuning in saccular hair cells of the bull-frog, Rana catesbeiana. J Physiol. 1988 Jun;400:275–297. doi: 10.1113/jphysiol.1988.sp017120. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jaramillo F., Hudspeth A. J. Displacement-clamp measurement of the forces exerted by gating springs in the hair bundle. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1330–1334. doi: 10.1073/pnas.90.4.1330. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jaramillo F., Hudspeth A. J. Localization of the hair cell's transduction channels at the hair bundle's top by iontophoretic application of a channel blocker. Neuron. 1991 Sep;7(3):409–420. doi: 10.1016/0896-6273(91)90293-9. [DOI] [PubMed] [Google Scholar]
- Jaramillo F., Wiesenfeld K. Mechanoelectrical transduction assisted by Brownian motion: a role for noise in the auditory system. Nat Neurosci. 1998 Sep;1(5):384–388. doi: 10.1038/1597. [DOI] [PubMed] [Google Scholar]
- Kroese A. B., Das A., Hudspeth A. J. Blockage of the transduction channels of hair cells in the bullfrog's sacculus by aminoglycoside antibiotics. Hear Res. 1989 Feb;37(3):203–217. doi: 10.1016/0378-5955(89)90023-3. [DOI] [PubMed] [Google Scholar]
- Kros C. J., Marcotti W., van Netten S. M., Self T. J., Libby R. T., Brown S. D. M., Richardson G. P., Steel K. P. Reduced climbing and increased slipping adaptation in cochlear hair cells of mice with Myo7a mutations. Nat Neurosci. 2002 Jan;5(1):41–47. doi: 10.1038/nn784. [DOI] [PubMed] [Google Scholar]
- Meyhöfer E., Howard J. The force generated by a single kinesin molecule against an elastic load. Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):574–578. doi: 10.1073/pnas.92.2.574. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ricci A. J., Wu Y. C., Fettiplace R. The endogenous calcium buffer and the time course of transducer adaptation in auditory hair cells. J Neurosci. 1998 Oct 15;18(20):8261–8277. doi: 10.1523/JNEUROSCI.18-20-08261.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steyger P. S., Gillespie P. G., Baird R. A. Myosin Ibeta is located at tip link anchors in vestibular hair bundles. J Neurosci. 1998 Jun 15;18(12):4603–4615. doi: 10.1523/JNEUROSCI.18-12-04603.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Visscher K., Schnitzer M. J., Block S. M. Single kinesin molecules studied with a molecular force clamp. Nature. 1999 Jul 8;400(6740):184–189. doi: 10.1038/22146. [DOI] [PubMed] [Google Scholar]
- Wu Y. C., Ricci A. J., Fettiplace R. Two components of transducer adaptation in auditory hair cells. J Neurophysiol. 1999 Nov;82(5):2171–2181. doi: 10.1152/jn.1999.82.5.2171. [DOI] [PubMed] [Google Scholar]
- Zhu T., Sata M., Ikebe M. Functional expression of mammalian myosin I beta: analysis of its motor activity. Biochemistry. 1996 Jan 16;35(2):513–522. doi: 10.1021/bi952053c. [DOI] [PubMed] [Google Scholar]