Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Dec;83(6):3211–3222. doi: 10.1016/S0006-3495(02)75323-X

Modulation of endothelial inward-rectifier K+ current by optical isomers of cholesterol.

Victor G Romanenko 1, George H Rothblat 1, Irena Levitan 1
PMCID: PMC1302398  PMID: 12496090

Abstract

Membrane potential of aortic endothelial cells under resting conditions is dominated by inward-rectifier K(+) channels belonging to the Kir 2 family. Regulation of endothelial Kir by membrane cholesterol was studied in bovine aortic endothelial cells by altering the sterol composition of the cell membrane. Our results show that enriching the cells with cholesterol decreases the Kir current density, whereas depleting the cells of cholesterol increases the density of the current. The dependence of the Kir current density on the level of cellular cholesterol fits a sigmoid curve with the highest sensitivity of the Kir current at normal physiological levels of cholesterol. To investigate the mechanism of Kir regulation by cholesterol, endogenous cholesterol was substituted by its optical isomer, epicholesterol. Substitution of approximately 50% of cholesterol by epicholesterol results in an early and significant increase in the Kir current density. Furthermore, substitution of cholesterol by epicholesterol has a stronger facilitative effect on the current than cholesterol depletion. Neither single channel properties nor membrane capacitance were significantly affected by the changes in the membrane sterol composition. These results suggest that 1) cholesterol modulates cellular K(+) conductance by changing the number of the active channels and 2) that specific cholesterol-protein interactions are critical for the regulation of endothelial Kir.

Full Text

The Full Text of this article is available as a PDF (330.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen O. S., Nielsen C., Maer A. M., Lundbaek J. A., Goulian M., Koeppe R. E., 2nd Ion channels as tools to monitor lipid bilayer-membrane protein interactions: gramicidin channels as molecular force transducers. Methods Enzymol. 1999;294:208–224. doi: 10.1016/s0076-6879(99)94013-2. [DOI] [PubMed] [Google Scholar]
  2. Barrantes F. J. Structural and functional crosstalk between acetylcholine receptor and its membrane environment. Mol Neurobiol. 1992 Winter;6(4):463–482. doi: 10.1007/BF02757947. [DOI] [PubMed] [Google Scholar]
  3. Barrantes F. J. Structural-functional correlates of the nicotinic acetylcholine receptor and its lipid microenvironment. FASEB J. 1993 Dec;7(15):1460–1467. doi: 10.1096/fasebj.7.15.8262330. [DOI] [PubMed] [Google Scholar]
  4. Bittman R., Blau L. The phospholipid-cholesterol interaction. Kinetics of water permeability in liposomes. Biochemistry. 1972 Dec 5;11(25):4831–4839. doi: 10.1021/bi00775a029. [DOI] [PubMed] [Google Scholar]
  5. Bolotina V., Omelyanenko V., Heyes B., Ryan U., Bregestovski P. Variations of membrane cholesterol alter the kinetics of Ca2(+)-dependent K+ channels and membrane fluidity in vascular smooth muscle cells. Pflugers Arch. 1989 Dec;415(3):262–268. doi: 10.1007/BF00370875. [DOI] [PubMed] [Google Scholar]
  6. Chang H. M., Reitstetter R., Mason R. P., Gruener R. Attenuation of channel kinetics and conductance by cholesterol: an interpretation using structural stress as a unifying concept. J Membr Biol. 1995 Jan;143(1):51–63. doi: 10.1007/BF00232523. [DOI] [PubMed] [Google Scholar]
  7. Cheetham J. J., Wachtel E., Bach D., Epand R. M. Role of the stereochemistry of the hydroxyl group of cholesterol and the formation of nonbilayer structures in phosphatidylethanolamines. Biochemistry. 1989 Oct 31;28(22):8928–8934. doi: 10.1021/bi00448a036. [DOI] [PubMed] [Google Scholar]
  8. Chen M., Mason R. P., Tulenko T. N. Atherosclerosis alters the composition, structure and function of arterial smooth muscle cell plasma membranes. Biochim Biophys Acta. 1995 Oct 17;1272(2):101–112. doi: 10.1016/0925-4439(95)00073-d. [DOI] [PubMed] [Google Scholar]
  9. Christian A. E., Haynes M. P., Phillips M. C., Rothblat G. H. Use of cyclodextrins for manipulating cellular cholesterol content. J Lipid Res. 1997 Nov;38(11):2264–2272. [PubMed] [Google Scholar]
  10. Cornelius F., Mahmmoud Y. A., Christensen H. R. Modulation of Na,K-ATPase by associated small transmembrane regulatory proteins and by lipids. J Bioenerg Biomembr. 2001 Oct;33(5):415–423. doi: 10.1023/a:1010671607911. [DOI] [PubMed] [Google Scholar]
  11. Demel R. A., Bruckdorfer K. R., van Deenen L. L. Structural requirements of sterols for the interaction with lecithin at the air water interface. Biochim Biophys Acta. 1972 Jan 17;255(1):311–320. doi: 10.1016/0005-2736(72)90030-2. [DOI] [PubMed] [Google Scholar]
  12. Fischer-Lougheed J., Liu J. H., Espinos E., Mordasini D., Bader C. R., Belin D., Bernheim L. Human myoblast fusion requires expression of functional inward rectifier Kir2.1 channels. J Cell Biol. 2001 May 14;153(4):677–686. doi: 10.1083/jcb.153.4.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fomina A. F., Fanger C. M., Kozak J. A., Cahalan M. D. Single channel properties and regulated expression of Ca(2+) release-activated Ca(2+) (CRAC) channels in human T cells. J Cell Biol. 2000 Sep 18;150(6):1435–1444. doi: 10.1083/jcb.150.6.1435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Forsyth S. E., Hoger A., Hoger J. H. Molecular cloning and expression of a bovine endothelial inward rectifier potassium channel. FEBS Lett. 1997 Jun 9;409(2):277–282. doi: 10.1016/s0014-5793(97)00514-0. [DOI] [PubMed] [Google Scholar]
  15. George R., McElhaney R. N. The effect of cholesterol and epicholesterol on the activity and temperature dependence of the purified, phospholipid-reconstituted (Na+ + Mg2+)-ATPase from Acholeplasma laidlawii B membranes. Biochim Biophys Acta. 1992 Jun 11;1107(1):111–118. doi: 10.1016/0005-2736(92)90335-j. [DOI] [PubMed] [Google Scholar]
  16. Gidwani A., Holowka D., Baird B. Fluorescence anisotropy measurements of lipid order in plasma membranes and lipid rafts from RBL-2H3 mast cells. Biochemistry. 2001 Oct 16;40(41):12422–12429. doi: 10.1021/bi010496c. [DOI] [PubMed] [Google Scholar]
  17. Gimpl G., Burger K., Fahrenholz F. Cholesterol as modulator of receptor function. Biochemistry. 1997 Sep 9;36(36):10959–10974. doi: 10.1021/bi963138w. [DOI] [PubMed] [Google Scholar]
  18. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  19. Ishihara K., Hiraoka M. Gating mechanism of the cloned inward rectifier potassium channel from mouse heart. J Membr Biol. 1994 Oct;142(1):55–64. doi: 10.1007/BF00233383. [DOI] [PubMed] [Google Scholar]
  20. Ishikawa T. T., MacGee J., Morrison J. A., Glueck C. J. Quantitative analysis of cholesterol in 5 to 20 microliter of plasma. J Lipid Res. 1974 May;15(3):286–291. [PubMed] [Google Scholar]
  21. Jennings L. J., Xu Q. W., Firth T. A., Nelson M. T., Mawe G. M. Cholesterol inhibits spontaneous action potentials and calcium currents in guinea pig gallbladder smooth muscle. Am J Physiol. 1999 Nov;277(5 Pt 1):G1017–G1026. doi: 10.1152/ajpgi.1999.277.5.G1017. [DOI] [PubMed] [Google Scholar]
  22. Kamouchi M., Van Den Bremt K., Eggermont J., Droogmans G., Nilius B. Modulation of inwardly rectifying potassium channels in cultured bovine pulmonary artery endothelial cells. J Physiol. 1997 Nov 1;504(Pt 3):545–556. doi: 10.1111/j.1469-7793.1997.545bd.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kellner-Weibel G., Geng Y. J., Rothblat G. H. Cytotoxic cholesterol is generated by the hydrolysis of cytoplasmic cholesteryl ester and transported to the plasma membrane. Atherosclerosis. 1999 Oct;146(2):309–319. doi: 10.1016/s0021-9150(99)00155-0. [DOI] [PubMed] [Google Scholar]
  24. Klansek J. J., Yancey P., St Clair R. W., Fischer R. T., Johnson W. J., Glick J. M. Cholesterol quantitation by GLC: artifactual formation of short-chain steryl esters. J Lipid Res. 1995 Oct;36(10):2261–2266. [PubMed] [Google Scholar]
  25. Klein U., Gimpl G., Fahrenholz F. Alteration of the myometrial plasma membrane cholesterol content with beta-cyclodextrin modulates the binding affinity of the oxytocin receptor. Biochemistry. 1995 Oct 24;34(42):13784–13793. doi: 10.1021/bi00042a009. [DOI] [PubMed] [Google Scholar]
  26. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  27. Levitan E. S., Takimoto K. Dynamic regulation of K+ channel gene expression in differentiated cells. J Neurobiol. 1998 Oct;37(1):60–68. doi: 10.1002/(sici)1097-4695(199810)37:1<60::aid-neu5>3.0.co;2-6. [DOI] [PubMed] [Google Scholar]
  28. Levitan I., Christian A. E., Tulenko T. N., Rothblat G. H. Membrane cholesterol content modulates activation of volume-regulated anion current in bovine endothelial cells. J Gen Physiol. 2000 Apr;115(4):405–416. doi: 10.1085/jgp.115.4.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Levitan I., Garber S. S. Anion competition for a volume-regulated current. Biophys J. 1998 Jul;75(1):226–235. doi: 10.1016/S0006-3495(98)77509-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Liu Y., Liu D., Heath L., Meyers D. M., Krafte D. S., Wagoner P. K., Silvia C. P., Yu W., Curran M. E. Direct activation of an inwardly rectifying potassium channel by arachidonic acid. Mol Pharmacol. 2001 May;59(5):1061–1068. doi: 10.1124/mol.59.5.1061. [DOI] [PubMed] [Google Scholar]
  31. Lundbaek J. A., Birn P., Girshman J., Hansen A. J., Andersen O. S. Membrane stiffness and channel function. Biochemistry. 1996 Mar 26;35(12):3825–3830. doi: 10.1021/bi952250b. [DOI] [PubMed] [Google Scholar]
  32. Markwell M. A., Haas S. M., Bieber L. L., Tolbert N. E. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem. 1978 Jun 15;87(1):206–210. doi: 10.1016/0003-2697(78)90586-9. [DOI] [PubMed] [Google Scholar]
  33. Martens J. R., Navarro-Polanco R., Coppock E. A., Nishiyama A., Parshley L., Grobaski T. D., Tamkun M. M. Differential targeting of Shaker-like potassium channels to lipid rafts. J Biol Chem. 2000 Mar 17;275(11):7443–7446. doi: 10.1074/jbc.275.11.7443. [DOI] [PubMed] [Google Scholar]
  34. Martens J. R., Sakamoto N., Sullivan S. A., Grobaski T. D., Tamkun M. M. Isoform-specific localization of voltage-gated K+ channels to distinct lipid raft populations. Targeting of Kv1.5 to caveolae. J Biol Chem. 2000 Dec 13;276(11):8409–8414. doi: 10.1074/jbc.M009948200. [DOI] [PubMed] [Google Scholar]
  35. McCloskey H. M., Rothblat G. H., Glick J. M. Incubation of acetylated low-density lipoprotein with cholesterol-rich dispersions enhances cholesterol uptake by macrophages. Biochim Biophys Acta. 1987 Sep 25;921(2):320–332. doi: 10.1016/0005-2760(87)90033-6. [DOI] [PubMed] [Google Scholar]
  36. Murari R., Murari M. P., Baumann W. J. Sterol orientations in phosphatidylcholine liposomes as determined by deuterium NMR. Biochemistry. 1986 Mar 11;25(5):1062–1067. doi: 10.1021/bi00353a017. [DOI] [PubMed] [Google Scholar]
  37. Nakamura T. Y., Artman M., Rudy B., Coetzee W. A. Inhibition of rat ventricular IK1 with antisense oligonucleotides targeted to Kir2.1 mRNA. Am J Physiol. 1998 Mar;274(3 Pt 2):H892–H900. doi: 10.1152/ajpheart.1998.274.3.H892. [DOI] [PubMed] [Google Scholar]
  38. Nehring R. B., Wischmeyer E., Döring F., Veh R. W., Sheng M., Karschin A. Neuronal inwardly rectifying K(+) channels differentially couple to PDZ proteins of the PSD-95/SAP90 family. J Neurosci. 2000 Jan 1;20(1):156–162. doi: 10.1523/JNEUROSCI.20-01-00156.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Oonuma Hitoshi, Iwasawa Kuniaki, Iida Haruko, Nagata Taiji, Imuta Hiroyuki, Morita Yutaka, Yamamoto Kazuhiko, Nagai Ryozo, Omata Masao, Nakajima Toshiaki. Inward rectifier K(+) current in human bronchial smooth muscle cells: inhibition with antisense oligonucleotides targeted to Kir2.1 mRNA. Am J Respir Cell Mol Biol. 2002 Mar;26(3):371–379. doi: 10.1165/ajrcmb.26.3.4542. [DOI] [PubMed] [Google Scholar]
  40. Penner R., Neher E. The patch-clamp technique in the study of secretion. Trends Neurosci. 1989 Apr;12(4):159–163. doi: 10.1016/0166-2236(89)90059-3. [DOI] [PubMed] [Google Scholar]
  41. Peters K. W., Qi J., Johnson J. P., Watkins S. C., Frizzell R. A. Role of snare proteins in CFTR and ENaC trafficking. Pflugers Arch. 2001 Jul 21;443 (Suppl 1):S65–S69. doi: 10.1007/s004240100647. [DOI] [PubMed] [Google Scholar]
  42. Sakmann B., Trube G. Conductance properties of single inwardly rectifying potassium channels in ventricular cells from guinea-pig heart. J Physiol. 1984 Feb;347:641–657. doi: 10.1113/jphysiol.1984.sp015088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Scanlon S. M., Williams D. C., Schloss P. Membrane cholesterol modulates serotonin transporter activity. Biochemistry. 2001 Sep 4;40(35):10507–10513. doi: 10.1021/bi010730z. [DOI] [PubMed] [Google Scholar]
  44. Shieh R. C., Lee Y. L. Ammonium ions induce inactivation of Kir2.1 potassium channels expressed in Xenopus oocytes. J Physiol. 2001 Sep 1;535(Pt 2):359–370. doi: 10.1111/j.1469-7793.2001.00359.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Shieh R. C. Mechanisms for the time-dependent decay of inward currents through cloned Kir2.1 channels expressed in Xenopus oocytes. J Physiol. 2000 Jul 15;526(Pt 2):241–252. doi: 10.1111/j.1469-7793.2000.00241.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Simons K., Ikonen E. How cells handle cholesterol. Science. 2000 Dec 1;290(5497):1721–1726. doi: 10.1126/science.290.5497.1721. [DOI] [PubMed] [Google Scholar]
  47. Sooksawate T., Simmonds M. A. Effects of membrane cholesterol on the sensitivity of the GABA(A) receptor to GABA in acutely dissociated rat hippocampal neurones. Neuropharmacology. 2001;40(2):178–184. doi: 10.1016/s0028-3908(00)00159-3. [DOI] [PubMed] [Google Scholar]
  48. Tong Y., Brandt G. S., Li M., Shapovalov G., Slimko E., Karschin A., Dougherty D. A., Lester H. A. Tyrosine decaging leads to substantial membrane trafficking during modulation of an inward rectifier potassium channel. J Gen Physiol. 2001 Feb;117(2):103–118. doi: 10.1085/jgp.117.2.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Voets T., Droogmans G., Nilius B. Membrane currents and the resting membrane potential in cultured bovine pulmonary artery endothelial cells. J Physiol. 1996 Nov 15;497(Pt 1):95–107. doi: 10.1113/jphysiol.1996.sp021752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Xu X., London E. The effect of sterol structure on membrane lipid domains reveals how cholesterol can induce lipid domain formation. Biochemistry. 2000 Feb 8;39(5):843–849. doi: 10.1021/bi992543v. [DOI] [PubMed] [Google Scholar]
  51. Yeagle P. L. Cholesterol and the cell membrane. Biochim Biophys Acta. 1985 Dec 9;822(3-4):267–287. doi: 10.1016/0304-4157(85)90011-5. [DOI] [PubMed] [Google Scholar]
  52. Yeagle P. L. Modulation of membrane function by cholesterol. Biochimie. 1991 Oct;73(10):1303–1310. doi: 10.1016/0300-9084(91)90093-g. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES