Abstract
The transbilayer movement of fluorescent phospholipid analogs in liposomes was studied at the lipid phase transition of phospholipid membranes. Two NBD-labeled analogs were used, one bearing the fluorescent moiety at a short fatty acid chain in the sn-2 position (C(6)-NBD-PC) and one headgroup-labeled analog having two long fatty acyl chains (N-NBD-PE). The transbilayer redistribution of the analogs was assessed by a dithionite-based assay. We observed a drastic increase of the transbilayer movement of both analogs at the lipid phase transition of DPPC (T(c) = 41 degrees C) and DMPC (T(c) = 23 degrees C). The flip-flop of analogs was fast at the T(c) of DPPC with a half-time (t(1/2)) of ~6-10 min and even faster at the T(c) of DMPC with t(1/2) on the order of <2 min, as shown for C(6)-NBD-PC. Suppressing the phase transition by the addition of cholesterol, the rapid transbilayer movement was abolished. Molecular packing defects at the phase transition are assumed to be responsible for the rapid transbilayer movement. The relevance of those defects for understanding of the activity of flippases is discussed.
Full Text
The Full Text of this article is available as a PDF (116.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Backer J. M., Dawidowicz E. A. Reconstitution of a phospholipid flippase from rat liver microsomes. 1987 May 28-Jun 3Nature. 327(6120):341–343. doi: 10.1038/327341a0. [DOI] [PubMed] [Google Scholar]
- Barry J. A., Gawrisch K. Effects of ethanol on lipid bilayers containing cholesterol, gangliosides, and sphingomyelin. Biochemistry. 1995 Jul 11;34(27):8852–8860. doi: 10.1021/bi00027a037. [DOI] [PubMed] [Google Scholar]
- Bassé F., Stout J. G., Sims P. J., Wiedmer T. Isolation of an erythrocyte membrane protein that mediates Ca2+-dependent transbilayer movement of phospholipid. J Biol Chem. 1996 Jul 19;271(29):17205–17210. doi: 10.1074/jbc.271.29.17205. [DOI] [PubMed] [Google Scholar]
- Bishop W. R., Bell R. M. Assembly of the endoplasmic reticulum phospholipid bilayer: the phosphatidylcholine transporter. Cell. 1985 Aug;42(1):51–60. doi: 10.1016/s0092-8674(85)80100-8. [DOI] [PubMed] [Google Scholar]
- Buton X., Morrot G., Fellmann P., Seigneuret M. Ultrafast glycerophospholipid-selective transbilayer motion mediated by a protein in the endoplasmic reticulum membrane. J Biol Chem. 1996 Mar 22;271(12):6651–6657. doi: 10.1074/jbc.271.12.6651. [DOI] [PubMed] [Google Scholar]
- Dao H. N., McIntyre J. C., Sleight R. G. Large-scale preparation of asymmetrically labeled fluorescent lipid vesicles. Anal Biochem. 1991 Jul;196(1):46–53. doi: 10.1016/0003-2697(91)90115-a. [DOI] [PubMed] [Google Scholar]
- De Kruijff B., Van Zoelen E. J. Effect of the phase transition on the transbilayer movement of dimyristoyl phosphatidylcholine in unilamellar vesicles. Biochim Biophys Acta. 1978 Jul 20;511(1):105–115. doi: 10.1016/0005-2736(78)90068-8. [DOI] [PubMed] [Google Scholar]
- Fattal E., Nir S., Parente R. A., Szoka F. C., Jr Pore-forming peptides induce rapid phospholipid flip-flop in membranes. Biochemistry. 1994 May 31;33(21):6721–6731. doi: 10.1021/bi00187a044. [DOI] [PubMed] [Google Scholar]
- Herrmann A., Zachowski A., Devaux P. F. Protein-mediated phospholipid translocation in the endoplasmic reticulum with a low lipid specificity. Biochemistry. 1990 Feb 27;29(8):2023–2027. doi: 10.1021/bi00460a010. [DOI] [PubMed] [Google Scholar]
- Hrafnsdóttir S., Menon A. K. Reconstitution and partial characterization of phospholipid flippase activity from detergent extracts of the Bacillus subtilis cell membrane. J Bacteriol. 2000 Aug;182(15):4198–4206. doi: 10.1128/jb.182.15.4198-4206.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hrafnsdóttir S., Nichols J. W., Menon A. K. Transbilayer movement of fluorescent phospholipids in Bacillus megaterium membrane vesicles. Biochemistry. 1997 Apr 22;36(16):4969–4978. doi: 10.1021/bi962513h. [DOI] [PubMed] [Google Scholar]
- Huijbregts R. P., de Kroon A. I., de Kruijff B. Rapid transmembrane movement of newly synthesized phosphatidylethanolamine across the inner membrane of Escherichia coli. J Biol Chem. 1998 Jul 24;273(30):18936–18942. doi: 10.1074/jbc.273.30.18936. [DOI] [PubMed] [Google Scholar]
- Huster D., Müller P., Arnold K., Herrmann A. Dynamics of membrane penetration of the fluorescent 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) group attached to an acyl chain of phosphatidylcholine. Biophys J. 2001 Feb;80(2):822–831. doi: 10.1016/S0006-3495(01)76061-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kol M. A., de Kroon A. I., Rijkers D. T., Killian J. A., de Kruijff B. Membrane-spanning peptides induce phospholipid flop: a model for phospholipid translocation across the inner membrane of E. coli. Biochemistry. 2001 Sep 4;40(35):10500–10506. doi: 10.1021/bi010627+. [DOI] [PubMed] [Google Scholar]
- Kubelt Janek, Menon Anant K., Müller Peter, Herrmann Andreas. Transbilayer movement of fluorescent phospholipid analogues in the cytoplasmic membrane of Escherichia coli. Biochemistry. 2002 Apr 30;41(17):5605–5612. doi: 10.1021/bi0118714. [DOI] [PubMed] [Google Scholar]
- Langner M., Hui S. W. Dithionite penetration through phospholipid bilayers as a measure of defects in lipid molecular packing. Chem Phys Lipids. 1993 Apr;65(1):23–30. doi: 10.1016/0009-3084(93)90078-h. [DOI] [PubMed] [Google Scholar]
- Marx U., Lassmann G., Holzhütter H. G., Wüstner D., Müller P., Höhlig A., Kubelt J., Herrmann A. Rapid flip-flop of phospholipids in endoplasmic reticulum membranes studied by a stopped-flow approach. Biophys J. 2000 May;78(5):2628–2640. doi: 10.1016/S0006-3495(00)76807-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsuzaki K., Murase O., Fujii N., Miyajima K. An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry. 1996 Sep 3;35(35):11361–11368. doi: 10.1021/bi960016v. [DOI] [PubMed] [Google Scholar]
- McIntyre J. C., Sleight R. G. Fluorescence assay for phospholipid membrane asymmetry. Biochemistry. 1991 Dec 24;30(51):11819–11827. doi: 10.1021/bi00115a012. [DOI] [PubMed] [Google Scholar]
- Menon A. K., Watkins WE3rd, Hrafnsdóttir S. Specific proteins are required to translocate phosphatidylcholine bidirectionally across the endoplasmic reticulum. Curr Biol. 2000 Mar 9;10(5):241–252. doi: 10.1016/s0960-9822(00)00356-0. [DOI] [PubMed] [Google Scholar]
- Nagle J. F., Tristram-Nagle S. Structure of lipid bilayers. Biochim Biophys Acta. 2000 Nov 10;1469(3):159–195. doi: 10.1016/s0304-4157(00)00016-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nichols J. W., Pagano R. E. Resonance energy transfer assay of protein-mediated lipid transfer between vesicles. J Biol Chem. 1983 May 10;258(9):5368–5371. [PubMed] [Google Scholar]
- Nichols J. W., Pagano R. E. Use of resonance energy transfer to study the kinetics of amphiphile transfer between vesicles. Biochemistry. 1982 Apr 13;21(8):1720–1726. doi: 10.1021/bi00537a003. [DOI] [PubMed] [Google Scholar]
- Vist M. R., Davis J. H. Phase equilibria of cholesterol/dipalmitoylphosphatidylcholine mixtures: 2H nuclear magnetic resonance and differential scanning calorimetry. Biochemistry. 1990 Jan 16;29(2):451–464. doi: 10.1021/bi00454a021. [DOI] [PubMed] [Google Scholar]
- van Zoelen E. J., de Kruijff B., van Deenen L. L. Protein-mediated transbilayer movement of lysophosphatidylcholine in glycophorin-containing vesicles. Biochim Biophys Acta. 1978 Mar 21;508(1):97–108. doi: 10.1016/0005-2736(78)90191-8. [DOI] [PubMed] [Google Scholar]