Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Dec;83(6):3336–3350. doi: 10.1016/S0006-3495(02)75334-4

Solid-state 19F-NMR analysis of 19F-labeled tryptophan in gramicidin A in oriented membranes.

Stephan L Grage 1, Junfeng Wang 1, Timothy A Cross 1, Anne S Ulrich 1
PMCID: PMC1302409  PMID: 12496101

Abstract

The response of membrane-associated peptides toward the lipid environment or other binding partners can be monitored by solid-state NMR of suitably labeled side chains. Tryptophan is a prominent amino acid in transmembrane helices, and its (19)F-labeled analogues are generally biocompatible and cause little structural perturbation. Hence, we use 5F-Trp as a highly sensitive NMR probe to monitor the conformation and dynamics of the indole ring. To establish this (19)F-NMR strategy, gramicidin A was labeled with 5F-Trp in position 13 or 15, whose chi(1)/chi(2) torsion angles are known from previous (2)H-NMR studies. First, the alignment of the (19)F chemical shift anisotropy tensor within the membrane was deduced by lineshape analysis of oriented samples. Next, the three principal axes of the (19)F chemical shift anisotropy tensor were assigned within the molecular frame of the indole ring. Finally, determination of chi(1)/chi(2) for 5F-Trp in the lipid gel phase showed that the side chain alignment differs by up to 20 degrees from its known conformation in the liquid crystalline state. The sensitivity gain of (19)F-NMR and the reduction in the amount of material was at least 10-fold compared with previous (2)H-NMR studies on the same system and 100-fold compared with (15)N-NMR.

Full Text

The Full Text of this article is available as a PDF (275.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson D. G., Shirts R. B., Cross T. A., Busath D. D. Noncontact dipole effects on channel permeation. V. Computed potentials for fluorinated gramicidin. Biophys J. 2001 Sep;81(3):1255–1264. doi: 10.1016/S0006-3495(01)75783-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arseniev A. S., Barsukov I. L., Bystrov V. F., Lomize A. L., Ovchinnikov YuA 1H-NMR study of gramicidin A transmembrane ion channel. Head-to-head right-handed, single-stranded helices. FEBS Lett. 1985 Jul 8;186(2):168–174. doi: 10.1016/0014-5793(85)80702-x. [DOI] [PubMed] [Google Scholar]
  3. Avdonin V., Hoshi T. Modification of voltage-dependent gating of potassium channels by free form of tryptophan side chain. Biophys J. 2001 Jul;81(1):97–106. doi: 10.1016/S0006-3495(01)75683-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Becker M. D., Greathouse D. V., Koeppe R. E., 2nd, Andersen O. S. Amino acid sequence modulation of gramicidin channel function: effects of tryptophan-to-phenylalanine substitutions on the single-channel conductance and duration. Biochemistry. 1991 Sep 10;30(36):8830–8839. doi: 10.1021/bi00100a015. [DOI] [PubMed] [Google Scholar]
  5. Bouchard M., Pare C., Dutasta J. P., Chauvet J. P., Gicquaud C., Auger M. Interaction between G-actin and various types of liposomes: A 19F, 31P, and 2H nuclear magnetic resonance study. Biochemistry. 1998 Mar 3;37(9):3149–3155. doi: 10.1021/bi971892r. [DOI] [PubMed] [Google Scholar]
  6. Busath D. D., Thulin C. D., Hendershot R. W., Phillips L. R., Maughan P., Cole C. D., Bingham N. C., Morrison S., Baird L. C., Hendershot R. J. Noncontact dipole effects on channel permeation. I. Experiments with (5F-indole)Trp13 gramicidin A channels. Biophys J. 1998 Dec;75(6):2830–2844. doi: 10.1016/S0006-3495(98)77726-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Clayton A. H., Sawyer W. H. The structure and orientation of class-A amphipathic peptides on a phospholipid bilayer surface. Eur Biophys J. 1999;28(2):133–141. doi: 10.1007/s002490050192. [DOI] [PubMed] [Google Scholar]
  8. Clayton A. H., Sawyer W. H. Tryptophan rotamer distributions in amphipathic peptides at a lipid surface. Biophys J. 1999 Jun;76(6):3235–3242. doi: 10.1016/S0006-3495(99)77475-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cotten M., Tian C., Busath D. D., Shirts R. B., Cross T. A. Modulating dipoles for structure-function correlations in the gramicidin A channel. Biochemistry. 1999 Jul 20;38(29):9185–9197. doi: 10.1021/bi982981m. [DOI] [PubMed] [Google Scholar]
  10. Cotten M., Xu F., Cross T. A. Protein stability and conformational rearrangements in lipid bilayers: linear gramicidin, a model system. Biophys J. 1997 Aug;73(2):614–623. doi: 10.1016/S0006-3495(97)78097-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cross T. A., Tian F., Cotten M., Wang J., Kovacs F., Fu R. Correlations of structure, dynamics and function in the gramicidin channel by solid-state NMR spectroscopy. Novartis Found Symp. 1999;225:4–22. [PubMed] [Google Scholar]
  12. Danielson M. A., Falke J. J. Use of 19F NMR to probe protein structure and conformational changes. Annu Rev Biophys Biomol Struct. 1996;25:163–195. doi: 10.1146/annurev.bb.25.060196.001115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dorigo A. E., Anderson D. G., Busath D. D. Noncontact dipole effects on channel permeation. II. Trp conformations and dipole potentials in gramicidin A. Biophys J. 1999 Apr;76(4):1897–1908. doi: 10.1016/S0006-3495(99)77348-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fields C. G., Fields G. B., Noble R. L., Cross T. A. Solid phase peptide synthesis of 15N-gramicidins A, B, and C and high performance liquid chromatographic purification. Int J Pept Protein Res. 1989 Apr;33(4):298–303. doi: 10.1111/j.1399-3011.1989.tb01285.x. [DOI] [PubMed] [Google Scholar]
  15. Fields G. B., Fields C. G., Petefish J., Van Wart H. E., Cross T. A. Solid-phase peptide synthesis and solid-state NMR spectroscopy of [Ala3-15N][Val1]gramicidin A. Proc Natl Acad Sci U S A. 1988 Mar;85(5):1384–1388. doi: 10.1073/pnas.85.5.1384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Friedrich C. L., Rozek A., Patrzykat A., Hancock R. E. Structure and mechanism of action of an indolicidin peptide derivative with improved activity against gram-positive bacteria. J Biol Chem. 2001 Apr 9;276(26):24015–24022. doi: 10.1074/jbc.M009691200. [DOI] [PubMed] [Google Scholar]
  17. Fu R., Cross T. A. Solid-state nuclear magnetic resonance investigation of protein and polypeptide structure. Annu Rev Biophys Biomol Struct. 1999;28:235–268. doi: 10.1146/annurev.biophys.28.1.235. [DOI] [PubMed] [Google Scholar]
  18. Glaubitz C., Watts A. Magic angle-oriented sample spinning (MAOSS): A new approach toward biomembrane studies. J Magn Reson. 1998 Feb;130(2):305–316. doi: 10.1006/jmre.1997.1344. [DOI] [PubMed] [Google Scholar]
  19. Hancock R. E., Diamond G. The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol. 2000 Sep;8(9):402–410. doi: 10.1016/s0966-842x(00)01823-0. [DOI] [PubMed] [Google Scholar]
  20. Harold F. M., Baarda J. R. Gramicidin, valinomycin, and cation permeability of Streptococcus faecalis. J Bacteriol. 1967 Jul;94(1):53–60. doi: 10.1128/jb.94.1.53-60.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hofmann A., Raguénès-Nicol C., Favier-Perron B., Mesonero J., Huber R., Russo-Marie F., Lewit-Bentley A. The annexin A3-membrane interaction is modulated by an N-terminal tryptophan. Biochemistry. 2000 Jul 4;39(26):7712–7721. doi: 10.1021/bi992359+. [DOI] [PubMed] [Google Scholar]
  22. Hu W., Cross T. A. Tryptophan hydrogen bonding and electric dipole moments: functional roles in the gramicidin channel and implications for membrane proteins. Biochemistry. 1995 Oct 31;34(43):14147–14155. doi: 10.1021/bi00043a020. [DOI] [PubMed] [Google Scholar]
  23. Hu W., Lazo N. D., Cross T. A. Tryptophan dynamics and structural refinement in a lipid bilayer environment: solid state NMR of the gramicidin channel. Biochemistry. 1995 Oct 31;34(43):14138–14146. doi: 10.1021/bi00043a019. [DOI] [PubMed] [Google Scholar]
  24. Hu W., Lee K. C., Cross T. A. Tryptophans in membrane proteins: indole ring orientations and functional implications in the gramicidin channel. Biochemistry. 1993 Jul 13;32(27):7035–7047. doi: 10.1021/bi00078a032. [DOI] [PubMed] [Google Scholar]
  25. Jude A. R., Greathouse D. V., Leister M. C., Koeppe R. E., 2nd Steric interactions of valines 1, 5, and 7 in [valine 5, D-alanine 8] gramicidin A channels. Biophys J. 1999 Oct;77(4):1927–1935. doi: 10.1016/S0006-3495(99)77034-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Keniry M. A., Kintanar A., Smith R. L., Gutowsky H. S., Oldfield E. Nuclear magnetic resonance studies of amino acids and proteins. Deuterium nuclear magnetic resonance relaxation of deuteriomethyl-labeled amino acids in crystals and in Halobacterium halobium and Escherichia coli cell membranes. Biochemistry. 1984 Jan 17;23(2):288–298. doi: 10.1021/bi00297a018. [DOI] [PubMed] [Google Scholar]
  27. Ketchem R. R., Hu W., Cross T. A. High-resolution conformation of gramicidin A in a lipid bilayer by solid-state NMR. Science. 1993 Sep 10;261(5127):1457–1460. doi: 10.1126/science.7690158. [DOI] [PubMed] [Google Scholar]
  28. Ketchem R., Roux B., Cross T. High-resolution polypeptide structure in a lamellar phase lipid environment from solid state NMR derived orientational constraints. Structure. 1997 Dec 15;5(12):1655–1669. doi: 10.1016/s0969-2126(97)00312-2. [DOI] [PubMed] [Google Scholar]
  29. Killian J. A. Gramicidin and gramicidin-lipid interactions. Biochim Biophys Acta. 1992 Dec 11;1113(3-4):391–425. doi: 10.1016/0304-4157(92)90008-x. [DOI] [PubMed] [Google Scholar]
  30. Klug C. A., Tasaki K., Tjandra N., Ho C., Schaefer J. Closed form of liganded glutamine-binding protein by rotational-echo double-resonance NMR. Biochemistry. 1997 Aug 5;36(31):9405–9408. doi: 10.1021/bi9705016. [DOI] [PubMed] [Google Scholar]
  31. Koenig B. W., Ferretti J. A., Gawrisch K. Site-specific deuterium order parameters and membrane-bound behavior of a peptide fragment from the intracellular domain of HIV-1 gp41. Biochemistry. 1999 May 11;38(19):6327–6334. doi: 10.1021/bi982800g. [DOI] [PubMed] [Google Scholar]
  32. Koeppe R. E., 2nd, Hatchett J., Jude A. R., Providence L. L., Andersen O. S., Greathouse D. V. Neighboring aliphatic/aromatic side chain interactions between residues 9 and 10 in gramicidin channels. Biochemistry. 2000 Mar 7;39(9):2235–2242. doi: 10.1021/bi9920679. [DOI] [PubMed] [Google Scholar]
  33. Koeppe R. E., 2nd, Killian J. A., Greathouse D. V. Orientations of the tryptophan 9 and 11 side chains of the gramicidin channel based on deuterium nuclear magnetic resonance spectroscopy. Biophys J. 1994 Jan;66(1):14–24. doi: 10.1016/S0006-3495(94)80748-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Koeppe R. E., 2nd, Killian J. A., Vogt T. C., de Kruijff B., Taylor M. J., Mattice G. L., Greathouse D. V. Palmitoylation-induced conformational changes of specific side chains in the gramicidin transmembrane channel. Biochemistry. 1995 Jul 25;34(29):9299–9306. doi: 10.1021/bi00029a004. [DOI] [PubMed] [Google Scholar]
  35. Ladokhin A. S., White S. H. Alphas and taus of tryptophan fluorescence in membranes. Biophys J. 2001 Sep;81(3):1825–1827. doi: 10.1016/S0006-3495(01)75833-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Lau E. Y., Gerig J. T. Effects of fluorine substitution on the structure and dynamics of complexes of dihydrofolate reductase (Escherichia coli). Biophys J. 1997 Sep;73(3):1579–1592. doi: 10.1016/S0006-3495(97)78190-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Lazo N. D., Hu W., Cross T. A. Low-temperature solid-state 15N NMR characterization of polypeptide backbone librations. J Magn Reson B. 1995 Apr;107(1):43–50. doi: 10.1006/jmrb.1995.1056. [DOI] [PubMed] [Google Scholar]
  38. Lazo N. D., Hu W., Lee K. C., Cross T. A. Rapidly-frozen polypeptide samples for characterization of high definition dynamics by solid-state NMR spectroscopy. Biochem Biophys Res Commun. 1993 Dec 15;197(2):904–909. doi: 10.1006/bbrc.1993.2564. [DOI] [PubMed] [Google Scholar]
  39. Lee K. C., Hu W., Cross T. A. 2H NMR determination of the global correlation time of the gramicidin channel in a lipid bilayer. Biophys J. 1993 Sep;65(3):1162–1167. doi: 10.1016/S0006-3495(93)81150-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Lee K. C., Huo S., Cross T. A. Lipid-peptide interface: valine conformation and dynamics in the gramicidin channel. Biochemistry. 1995 Jan 24;34(3):857–867. doi: 10.1021/bi00003a020. [DOI] [PubMed] [Google Scholar]
  41. Luck L. A., Johnson C. Fluorescence and 19F NMR evidence that phenylalanine, 3-L-fluorophenylalanine and 4-L-fluorophenylalanine bind to the L-leucine specific receptor of Escherichia coli. Protein Sci. 2000 Dec;9(12):2573–2576. doi: 10.1110/ps.9.12.2573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Luck L. A., Vance J. E., O'Connell T. M., London R. E. 19F NMR relaxation studies on 5-fluorotryptophan- and tetradeutero-5-fluorotryptophan-labeled E. coli glucose/galactose receptor. J Biomol NMR. 1996 Jun;7(4):261–272. doi: 10.1007/BF00200428. [DOI] [PubMed] [Google Scholar]
  43. Macdonald P. M., Seelig J. Dynamic properties of gramicidin A in phospholipid membranes. Biochemistry. 1988 Apr 5;27(7):2357–2364. doi: 10.1021/bi00407a017. [DOI] [PubMed] [Google Scholar]
  44. Marassi F. M., Opella S. J. NMR structural studies of membrane proteins. Curr Opin Struct Biol. 1998 Oct;8(5):640–648. doi: 10.1016/s0959-440x(98)80157-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Maruyama T., Takeuchi H. Raman linear intensity difference of membrane-bound peptides: indole ring orientations of tryptophans 11 and 13 in the gramicidin A transmembrane channel. Biospectroscopy. 1998;4(3):171–184. doi: 10.1002/(sici)1520-6343(1998)4:3<171::aid-bspy3>3.0.co;2-7. [DOI] [PubMed] [Google Scholar]
  46. McDowell L. M., Holl S. M., Qian S. J., Li E., Schaefer J. Inter-tryptophan distances in rat cellular retinol binding protein II by solid-state NMR. Biochemistry. 1993 May 4;32(17):4560–4563. doi: 10.1021/bi00068a011. [DOI] [PubMed] [Google Scholar]
  47. McDowell L. M., Lee M., McKay R. A., Anderson K. S., Schaefer J. Intersubunit communication in tryptophan synthase by carbon-13 and fluorine-19 REDOR NMR. Biochemistry. 1996 Mar 12;35(10):3328–3334. doi: 10.1021/bi9518297. [DOI] [PubMed] [Google Scholar]
  48. Morein S., Koeppe II R. E., Lindblom G., de Kruijff B., Killian J. A. The effect of peptide/lipid hydrophobic mismatch on the phase behavior of model membranes mimicking the lipid composition in Escherichia coli membranes. Biophys J. 2000 May;78(5):2475–2485. doi: 10.1016/s0006-3495(00)76792-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Mousson F., Beswick V., Coïc Y. M., Baleux F., Huynh-Dinh T., Sanson A., Neumann J. M. Concerted influence of key amino acids on the lipid binding properties of a single-spanning membrane protein: NMR and mutational analysis. Biochemistry. 2001 Aug 21;40(33):9993–10000. doi: 10.1021/bi010924e. [DOI] [PubMed] [Google Scholar]
  50. Murphy O. J., 3rd, Kovacs F. A., Sicard E. L., Thompson L. K. Site-directed solid-state NMR measurement of a ligand-induced conformational change in the serine bacterial chemoreceptor. Biochemistry. 2001 Feb 6;40(5):1358–1366. doi: 10.1021/bi0015109. [DOI] [PubMed] [Google Scholar]
  51. Nicholson L. K., Asakura T., Demura M., Cross T. A. A method for studying the structure of uniaxially aligned biopolymers using solid state 15N-nmr: application to Bombyx mori silk fibroin fibers. Biopolymers. 1993 May;33(5):847–861. doi: 10.1002/bip.360330513. [DOI] [PubMed] [Google Scholar]
  52. Nicholson L. K., Teng Q., Cross T. A. Solid-state nuclear magnetic resonance derived model for dynamics in the polypeptide backbone of the gramicidin A channel. J Mol Biol. 1991 Apr 5;218(3):621–637. doi: 10.1016/0022-2836(91)90706-c. [DOI] [PubMed] [Google Scholar]
  53. Oh D., Shin S. Y., Lee S., Kang J. H., Kim S. D., Ryu P. D., Hahm K. S., Kim Y. Role of the hinge region and the tryptophan residue in the synthetic antimicrobial peptides, cecropin A(1-8)-magainin 2(1-12) and its analogues, on their antibiotic activities and structures. Biochemistry. 2000 Oct 3;39(39):11855–11864. doi: 10.1021/bi000453g. [DOI] [PubMed] [Google Scholar]
  54. Okada A., Miura T., Takeuchi H. Protonation of histidine and histidine-tryptophan interaction in the activation of the M2 ion channel from influenza a virus. Biochemistry. 2001 May 22;40(20):6053–6060. doi: 10.1021/bi0028441. [DOI] [PubMed] [Google Scholar]
  55. Opella S. J. NMR and membrane proteins. Nat Struct Biol. 1997 Oct;4 (Suppl):845–848. [PubMed] [Google Scholar]
  56. Pascal S. M., Cross T. A. High-resolution structure and dynamic implications for a double-helical gramicidin A conformer. J Biomol NMR. 1993 Sep;3(5):495–513. doi: 10.1007/BF00174606. [DOI] [PubMed] [Google Scholar]
  57. Paupardin-Tritsch D., Hammond C., Gerschenfeld H. M. Serotonin and cyclic GMP both induce an increase of the calcium current in the same identified molluscan neurons. J Neurosci. 1986 Sep;6(9):2715–2723. doi: 10.1523/JNEUROSCI.06-09-02715.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Phillips L. R., Cole C. D., Hendershot R. J., Cotten M., Cross T. A., Busath D. D. Noncontact dipole effects on channel permeation. III. Anomalous proton conductance effects in gramicidin. Biophys J. 2008 Nov 21;77(5):2492–2501. doi: 10.1016/S0006-3495(99)77085-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Pigault C., Follenius-Wund A., Chabbert M. Role of Trp-187 in the annexin V-membrane interaction: a molecular mechanics analysis. Biochem Biophys Res Commun. 1999 Jan 19;254(2):484–489. doi: 10.1006/bbrc.1998.9965. [DOI] [PubMed] [Google Scholar]
  60. Reshetnyak Y. K., Burstein E. A. Decomposition of protein tryptophan fluorescence spectra into log-normal components. II. The statistical proof of discreteness of tryptophan classes in proteins. Biophys J. 2001 Sep;81(3):1710–1734. doi: 10.1016/S0006-3495(01)75824-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Reshetnyak Y. K., Koshevnik Y., Burstein E. A. Decomposition of protein tryptophan fluorescence spectra into log-normal components. III. Correlation between fluorescence and microenvironment parameters of individual tryptophan residues. Biophys J. 2001 Sep;81(3):1735–1758. doi: 10.1016/S0006-3495(01)75825-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Rinia H. A., Kik R. A., Demel R. A., Snel M. M., Killian J. A., van Der Eerden J. P., de Kruijff B. Visualization of highly ordered striated domains induced by transmembrane peptides in supported phosphatidylcholine bilayers. Biochemistry. 2000 May 16;39(19):5852–5858. doi: 10.1021/bi000010c. [DOI] [PubMed] [Google Scholar]
  63. Salgado J., Grage S. L., Kondejewski L. H., Hodges R. S., McElhaney R. N., Ulrich A. S. Membrane-bound structure and alignment of the antimicrobial beta-sheet peptide gramicidin S derived from angular and distance constraints by solid state 19F-NMR. J Biomol NMR. 2001 Nov;21(3):191–208. doi: 10.1023/a:1012946026231. [DOI] [PubMed] [Google Scholar]
  64. Scarlata S. F. Effect of increased chain packing on gramicidin-lipid interactions. Biochemistry. 1991 Oct 15;30(41):9853–9859. doi: 10.1021/bi00105a007. [DOI] [PubMed] [Google Scholar]
  65. Scarlata S. F. The effects of viscosity on gramicidin tryptophan rotational motion. Biophys J. 1988 Dec;54(6):1149–1157. doi: 10.1016/S0006-3495(88)83049-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Schiffer M., Chang C. H., Stevens F. J. The functions of tryptophan residues in membrane proteins. Protein Eng. 1992 Apr;5(3):213–214. doi: 10.1093/protein/5.3.213. [DOI] [PubMed] [Google Scholar]
  67. Sharpe S., Barber K. R., Grant C. W. Val(659)-->Glu mutation within the transmembrane domain of ErbB-2: effects measured by (2)H NMR in fluid phospholipid bilayers. Biochemistry. 2000 May 30;39(21):6572–6580. doi: 10.1021/bi000038o. [DOI] [PubMed] [Google Scholar]
  68. Sharpe S., Grant C. W. A transmembrane peptide from the human EGF receptor: behaviour of the cytoplasmic juxtamembrane domain in lipid bilayers. Biochim Biophys Acta. 2000 Sep 29;1468(1-2):262–272. doi: 10.1016/s0005-2736(00)00267-4. [DOI] [PubMed] [Google Scholar]
  69. Spohn K. H., Kimmich R. Characterization of the mobility of various chemical groups in the purple membrane of Halobacterium halobium by 13C, 31P and 2H solid state NMR. Biochem Biophys Res Commun. 1983 Jul 29;114(2):713–720. doi: 10.1016/0006-291x(83)90839-2. [DOI] [PubMed] [Google Scholar]
  70. Takeuchi H., Nemoto Y., Harada I. Environments and conformations of tryptophan side chains of gramicidin A in phospholipid bilayers studied by Raman spectroscopy. Biochemistry. 1990 Feb 13;29(6):1572–1579. doi: 10.1021/bi00458a031. [DOI] [PubMed] [Google Scholar]
  71. Thompson N., Thompson G., Cole C. D., Cotten M., Cross T. A., Busath D. D. Noncontact dipole effects on channel permeation. IV. Kinetic model of 5F-Trp(13) gramicidin A currents. Biophys J. 2001 Sep;81(3):1245–1254. doi: 10.1016/S0006-3495(01)75782-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Townsley L. E., Tucker W. A., Sham S., Hinton J. F. Structures of gramicidins A, B, and C incorporated into sodium dodecyl sulfate micelles. Biochemistry. 2001 Oct 2;40(39):11676–11686. doi: 10.1021/bi010942w. [DOI] [PubMed] [Google Scholar]
  73. Ulrich A. S., Heyn M. P., Watts A. Structure determination of the cyclohexene ring of retinal in bacteriorhodopsin by solid-state deuterium NMR. Biochemistry. 1992 Oct 27;31(42):10390–10399. doi: 10.1021/bi00157a029. [DOI] [PubMed] [Google Scholar]
  74. Ulrich A. S., Wallat I., Heyn M. P., Watts A. Re-orientation of retinal in the M-photointermediate of bacteriorhodopsin. Nat Struct Biol. 1995 Mar;2(3):190–192. doi: 10.1038/nsb0395-190. [DOI] [PubMed] [Google Scholar]
  75. Ulrich A. S., Watts A. 2H NMR lineshapes of immobilized uniaxially oriented membrane proteins. Solid State Nucl Magn Reson. 1993 Apr;2(1-2):21–36. doi: 10.1016/0926-2040(93)90060-z. [DOI] [PubMed] [Google Scholar]
  76. Ulrich A. S., Watts A. Molecular response of the lipid headgroup to bilayer hydration monitored by 2H-NMR. Biophys J. 1994 May;66(5):1441–1449. doi: 10.1016/S0006-3495(94)80934-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Ulrich A. S., Watts A., Wallat I., Heyn M. P. Distorted structure of the retinal chromophore in bacteriorhodopsin resolved by 2H-NMR. Biochemistry. 1994 May 10;33(18):5370–5375. doi: 10.1021/bi00184a003. [DOI] [PubMed] [Google Scholar]
  78. Wallace B. A., Janes R. W. Tryptophans in membrane proteins. X-ray crystallographic analyses. Adv Exp Med Biol. 1999;467:789–799. doi: 10.1007/978-1-4615-4709-9_101. [DOI] [PubMed] [Google Scholar]
  79. Watts A., Ulrich A. S., Middleton D. A. Membrane protein structure: the contribution and potential of novel solid state NMR approaches. Mol Membr Biol. 1995 Jul-Sep;12(3):233–246. doi: 10.3109/09687689509072423. [DOI] [PubMed] [Google Scholar]
  80. Zemsky J., Rusinova E., Nemerson Y., Luck L. A., Ross J. B. Probing local environments of tryptophan residues in proteins: comparison of 19F nuclear magnetic resonance results with the intrinsic fluorescence of soluble human tissue factor. Proteins. 1999 Dec 1;37(4):709–716. [PubMed] [Google Scholar]
  81. de Planque M. R., Greathouse D. V., Koeppe R. E., 2nd, Schäfer H., Marsh D., Killian J. A. Influence of lipid/peptide hydrophobic mismatch on the thickness of diacylphosphatidylcholine bilayers. A 2H NMR and ESR study using designed transmembrane alpha-helical peptides and gramicidin A. Biochemistry. 1998 Jun 30;37(26):9333–9345. doi: 10.1021/bi980233r. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES