Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Dec;83(6):3408–3415. doi: 10.1016/S0006-3495(02)75340-X

Determination of membrane cholesterol partition coefficient using a lipid vesicle-cyclodextrin binary system: effect of phospholipid acyl chain unsaturation and headgroup composition.

Shui-Lin Niu 1, Burton J Litman 1
PMCID: PMC1302415  PMID: 12496107

Abstract

Lateral domain or raft formation in biological membranes is often discussed in terms of cholesterol-lipid interactions. Preferential interactions of cholesterol with lipids, varying in headgroup and acyl chain unsaturation, were studied by measuring the partition coefficient for cholesterol in unilamellar vesicles. A novel vesicle-cyclodextrin system was used, which precludes the possibility of cross-contamination between donor-acceptor vesicles or the need to modify one of the vesicle populations. Variation in phospholipid headgroup resulted in cholesterol partitioning in the order of sphingomyelin (SM) > phosphatidylserine > phosphatidylcholine (PC) > phosphatidylenthanolamine (PE), spanning a range of partition DeltaG of -1181 cal/mol to +683 cal/mol for SM and PE, respectively. Among the acyl chains examined, the order of cholesterol partitioning was 18:0(stearic acid),18:1n-9(oleic acid) PC > di18:1n-9PC > di18:1n-12(petroselenic acid) PC > di18:2n-6(linoleic acid) PC > 16:0(palmitic acid),22:6n-3(DHA) PC > di18:3n-3(alpha-linolenic acid) PC > di22:6n-3PC with a range in partition DeltaG of 913 cal/mol. Our results suggest that the large differences observed in cholesterol-lipid interactions contribute to the forces responsible for lateral domain formation in plasma membranes. These differences may also be responsible for the heterogeneous cholesterol distribution in cellular membranes, where cholesterol is highly enriched in plasma membranes and relatively depleted in intracellular membranes.

Full Text

The Full Text of this article is available as a PDF (322.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allain C. C., Poon L. S., Chan C. S., Richmond W., Fu P. C. Enzymatic determination of total serum cholesterol. Clin Chem. 1974 Apr;20(4):470–475. [PubMed] [Google Scholar]
  2. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  3. Bhuvaneswaran C., Mitropoulos K. A. Effect of liposomal phospholipid composition on cholesterol transfer between microsomal and liposomal vesicles. Biochem J. 1986 Sep 15;238(3):647–652. doi: 10.1042/bj2380647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bittman R., Kasireddy C. R., Mattjus P., Slotte J. P. Interaction of cholesterol with sphingomyelin in monolayers and vesicles. Biochemistry. 1994 Oct 4;33(39):11776–11781. doi: 10.1021/bi00205a013. [DOI] [PubMed] [Google Scholar]
  5. Brasaemle D. L., Robertson A. D., Attie A. D. Transbilayer movement of cholesterol in the human erythrocyte membrane. J Lipid Res. 1988 Apr;29(4):481–489. [PubMed] [Google Scholar]
  6. Brown D. A., London E. Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem. 2000 Jun 9;275(23):17221–17224. doi: 10.1074/jbc.R000005200. [DOI] [PubMed] [Google Scholar]
  7. Caspar D. L., Kirschner D. A. Myelin membrane structure at 10 A resolution. Nat New Biol. 1971 May 12;231(19):46–52. doi: 10.1038/newbio231046a0. [DOI] [PubMed] [Google Scholar]
  8. Christian A. E., Haynes M. P., Phillips M. C., Rothblat G. H. Use of cyclodextrins for manipulating cellular cholesterol content. J Lipid Res. 1997 Nov;38(11):2264–2272. [PubMed] [Google Scholar]
  9. Colbeau A., Nachbaur J., Vignais P. M. Enzymic characterization and lipid composition of rat liver subcellular membranes. Biochim Biophys Acta. 1971 Dec 3;249(2):462–492. doi: 10.1016/0005-2736(71)90123-4. [DOI] [PubMed] [Google Scholar]
  10. Demel R. A., Jansen J. W., van Dijck P. W., van Deenen L. L. The preferential interaction of cholesterol with different classes of phospholipids. Biochim Biophys Acta. 1977 Feb 14;465(1):1–10. doi: 10.1016/0005-2736(77)90350-9. [DOI] [PubMed] [Google Scholar]
  11. Fielding C. J., Fielding P. E. Cholesterol and caveolae: structural and functional relationships. Biochim Biophys Acta. 2000 Dec 15;1529(1-3):210–222. doi: 10.1016/s1388-1981(00)00150-5. [DOI] [PubMed] [Google Scholar]
  12. Fugler L., Clejan S., Bittman R. Movement of cholesterol between vesicles prepared with different phospholipids or sizes. J Biol Chem. 1985 Apr 10;260(7):4098–4102. [PubMed] [Google Scholar]
  13. Gimpl G., Burger K., Fahrenholz F. Cholesterol as modulator of receptor function. Biochemistry. 1997 Sep 9;36(36):10959–10974. doi: 10.1021/bi963138w. [DOI] [PubMed] [Google Scholar]
  14. Huang C. H. A structural model for the cholesterol-phosphatidylcholine complexes in bilayer membranes. Lipids. 1977 Apr;12(4):348–356. doi: 10.1007/BF02533637. [DOI] [PubMed] [Google Scholar]
  15. Huster D., Arnold K., Gawrisch K. Influence of docosahexaenoic acid and cholesterol on lateral lipid organization in phospholipid mixtures. Biochemistry. 1998 Dec 8;37(49):17299–17308. doi: 10.1021/bi980078g. [DOI] [PubMed] [Google Scholar]
  16. Keenan T. W., Morré D. J. Phospholipid class and fatty acid composition of golgi apparatus isolated from rat liver and comparison with other cell fractions. Biochemistry. 1970 Jan 6;9(1):19–25. doi: 10.1021/bi00803a003. [DOI] [PubMed] [Google Scholar]
  17. Koval M., Pagano R. E. Intracellular transport and metabolism of sphingomyelin. Biochim Biophys Acta. 1991 Mar 12;1082(2):113–125. doi: 10.1016/0005-2760(91)90184-j. [DOI] [PubMed] [Google Scholar]
  18. Kurzchalia T. V., Parton R. G. Membrane microdomains and caveolae. Curr Opin Cell Biol. 1999 Aug;11(4):424–431. doi: 10.1016/s0955-0674(99)80061-1. [DOI] [PubMed] [Google Scholar]
  19. Leventis R., Silvius J. R. Use of cyclodextrins to monitor transbilayer movement and differential lipid affinities of cholesterol. Biophys J. 2001 Oct;81(4):2257–2267. doi: 10.1016/S0006-3495(01)75873-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mayer L. D., Bally M. B., Hope M. J., Cullis P. R. Techniques for encapsulating bioactive agents into liposomes. Chem Phys Lipids. 1986 Jun-Jul;40(2-4):333–345. doi: 10.1016/0009-3084(86)90077-0. [DOI] [PubMed] [Google Scholar]
  21. Mitchell D. C., Litman B. J. Effect of cholesterol on molecular order and dynamics in highly polyunsaturated phospholipid bilayers. Biophys J. 1998 Aug;75(2):896–908. doi: 10.1016/S0006-3495(98)77578-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nair K. Saidas, Balasubramanian Nagaraj, Slepak Vladlen Z. Signal-dependent translocation of transducin, RGS9-1-Gbeta5L complex, and arrestin to detergent-resistant membrane rafts in photoreceptors. Curr Biol. 2002 Mar 5;12(5):421–425. doi: 10.1016/s0960-9822(02)00691-7. [DOI] [PubMed] [Google Scholar]
  23. Nakagawa Y., Inoue K., Nojima S. Transfer of cholesterol between liposomal membranes. Biochim Biophys Acta. 1979 May 17;553(2):307–319. doi: 10.1016/0005-2736(79)90234-7. [DOI] [PubMed] [Google Scholar]
  24. Niu Shui-Lin, Mitchell Drake C., Litman Burton J. Manipulation of cholesterol levels in rod disk membranes by methyl-beta-cyclodextrin: effects on receptor activation. J Biol Chem. 2002 Mar 11;277(23):20139–20145. doi: 10.1074/jbc.M200594200. [DOI] [PubMed] [Google Scholar]
  25. Ohvo-Rekilä H., Akerlund B., Slotte J. P. Cyclodextrin-catalyzed extraction of fluorescent sterols from monolayer membranes and small unilamellar vesicles. Chem Phys Lipids. 2000 Apr;105(2):167–178. doi: 10.1016/s0009-3084(00)00122-5. [DOI] [PubMed] [Google Scholar]
  26. Polozova A., Litman B. J. Cholesterol dependent recruitment of di22:6-PC by a G protein-coupled receptor into lateral domains. Biophys J. 2000 Nov;79(5):2632–2643. doi: 10.1016/S0006-3495(00)76502-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rodal S. K., Skretting G., Garred O., Vilhardt F., van Deurs B., Sandvig K. Extraction of cholesterol with methyl-beta-cyclodextrin perturbs formation of clathrin-coated endocytic vesicles. Mol Biol Cell. 1999 Apr;10(4):961–974. doi: 10.1091/mbc.10.4.961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schroeder F., Perlmutter J. F., Glaser M., Vagelos P. R. Isolation and characterization of subcellular membranes with altered phospholipid composition from cultured fibroblasts. J Biol Chem. 1976 Aug 25;251(16):5015–5026. [PubMed] [Google Scholar]
  29. Sen A., Yang P. W., Mantsch H. H., Hui S. W. Extended hydrogen-bonded structures of phosphatidylethanolamine. Chem Phys Lipids. 1988 Jun;47(2):109–116. doi: 10.1016/0009-3084(88)90079-5. [DOI] [PubMed] [Google Scholar]
  30. Seno K., Kishimoto M., Abe M., Higuchi Y., Mieda M., Owada Y., Yoshiyama W., Liu H., Hayashi F. Light- and guanosine 5'-3-O-(thio)triphosphate-sensitive localization of a G protein and its effector on detergent-resistant membrane rafts in rod photoreceptor outer segments. J Biol Chem. 2001 Apr 23;276(24):20813–20816. doi: 10.1074/jbc.C100032200. [DOI] [PubMed] [Google Scholar]
  31. Shin T. B., Leventis R., Silvius J. R. Partitioning of fluorescent phospholipid probes between different bilayer environments. Estimation of the free energy of interlipid hydrogen bonding. Biochemistry. 1991 Jul 30;30(30):7491–7497. doi: 10.1021/bi00244a018. [DOI] [PubMed] [Google Scholar]
  32. Simons K., Ikonen E. Functional rafts in cell membranes. Nature. 1997 Jun 5;387(6633):569–572. doi: 10.1038/42408. [DOI] [PubMed] [Google Scholar]
  33. Sooksawate T., Simmonds M. A. Effects of membrane cholesterol on the sensitivity of the GABA(A) receptor to GABA in acutely dissociated rat hippocampal neurones. Neuropharmacology. 2001;40(2):178–184. doi: 10.1016/s0028-3908(00)00159-3. [DOI] [PubMed] [Google Scholar]
  34. Spink C. H., Manley S., Breed M. Thermodynamics of transfer of cholesterol from gel to fluid phases of phospholipid bilayers. Biochim Biophys Acta. 1996 Mar 13;1279(2):190–196. doi: 10.1016/0005-2736(95)00267-7. [DOI] [PubMed] [Google Scholar]
  35. Stillwell W., Ehringer W. D., Dumaual A. C., Wassall S. R. Cholesterol condensation of alpha-linolenic and gamma-linolenic acid-containing phosphatidylcholine monolayers and bilayers. Biochim Biophys Acta. 1994 Sep 15;1214(2):131–136. doi: 10.1016/0005-2760(94)90036-1. [DOI] [PubMed] [Google Scholar]
  36. Stockton G. W., Smith I. C. A deuterium nuclear magnetic resonance study of the condensing effect of cholesterol on egg phosphatidylcholine bilayer membranes. I. Perdeuterated fatty acid probes. Chem Phys Lipids. 1976 Oct;17(2-3):251–263. doi: 10.1016/0009-3084(76)90070-0. [DOI] [PubMed] [Google Scholar]
  37. Van Dijck P. W., De Kruijff B., Van Deenen L. L., De Gier J., Demel R. A. The preference of cholesterol for phosphatidylcholine in mixed phosphatidylcholine-phosphatidylethanolamine bilayers. Biochim Biophys Acta. 1976 Dec 2;455(2):576–587. doi: 10.1016/0005-2736(76)90326-6. [DOI] [PubMed] [Google Scholar]
  38. Wattenberg B. W., Silbert D. F. Sterol partitioning among intracellular membranes. Testing a model for cellular sterol distribution. J Biol Chem. 1983 Feb 25;258(4):2284–2289. [PubMed] [Google Scholar]
  39. Yancey P. G., Rodrigueza W. V., Kilsdonk E. P., Stoudt G. W., Johnson W. J., Phillips M. C., Rothblat G. H. Cellular cholesterol efflux mediated by cyclodextrins. Demonstration Of kinetic pools and mechanism of efflux. J Biol Chem. 1996 Jul 5;271(27):16026–16034. doi: 10.1074/jbc.271.27.16026. [DOI] [PubMed] [Google Scholar]
  40. Yeagle P. L., Young J. E. Factors contributing to the distribution of cholesterol among phospholipid vesicles. J Biol Chem. 1986 Jun 25;261(18):8175–8181. [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES