Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Dec;83(6):3446–3459. doi: 10.1016/S0006-3495(02)75344-7

Sequence-dependent dynamics of duplex DNA: the applicability of a dinucleotide model.

T M Okonogi 1, S C Alley 1, A W Reese 1, P B Hopkins 1, B H Robinson 1
PMCID: PMC1302419  PMID: 12496111

Abstract

The short-time (submicrosecond) bending dynamics of duplex DNA were measured to determine the effect of sequence on dynamics. All measurements were obtained from a single site on duplex DNA, using a single, site-specific modified base containing a rigidly tethered, electron paramagnetic resonance active spin probe. The observed dynamics are interpreted in terms of single-step sequence-dependent bending force constants, determined from the mean squared amplitude of bending relative to the end-to-end vector using the modified weakly bending rod model. The bending dynamics at a single site are a function of the sequence of the nucleotides constituting the duplex DNA. We developed and examined several dinucleotide-based models for flexibility. The models indicate that the dominant feature of the dynamics is best explained in terms of purine- and pyrimidine-type steps, although distinction is made among all 10 unique steps: It was found that purine-purine steps (which are the same as pyrimidine-pyrimidine steps) were near average in flexibility, but the pyrimidine-purine steps (5' to 3') were nearly twice as flexible, whereas purine-pyrimidine steps were more than half as flexible as average DNA. Therefore, the range of stepwise flexibility is approximately fourfold and is characterized by both the type of base pair step (pyrimidine/purine combination) and the identity of the bases within the pair (G, A, T, or C). All of the four models considered here underscore the complexity of the dependence of dynamics on DNA sequence with certain sequences not satisfactorily explainable in terms of any dinucleotide model. These findings provide a quantitative basis for interpreting the dynamics and kinetics of DNA-sequence-dependent biological processes, including protein recognition and chromatin packaging.

Full Text

The Full Text of this article is available as a PDF (160.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson J. D., Widom J. Sequence and position-dependence of the equilibrium accessibility of nucleosomal DNA target sites. J Mol Biol. 2000 Mar 3;296(4):979–987. doi: 10.1006/jmbi.2000.3531. [DOI] [PubMed] [Google Scholar]
  2. Anselmi C., Bocchinfuso G., De Santis P., Savino M., Scipioni A. Dual role of DNA intrinsic curvature and flexibility in determining nucleosome stability. J Mol Biol. 1999 Mar 12;286(5):1293–1301. doi: 10.1006/jmbi.1998.2575. [DOI] [PubMed] [Google Scholar]
  3. Bacolla A., Gellibolian R., Shimizu M., Amirhaeri S., Kang S., Ohshima K., Larson J. E., Harvey S. C., Stollar B. D., Wells R. D. Flexible DNA: genetically unstable CTG.CAG and CGG.CCG from human hereditary neuromuscular disease genes. J Biol Chem. 1997 Jul 4;272(27):16783–16792. doi: 10.1074/jbc.272.27.16783. [DOI] [PubMed] [Google Scholar]
  4. Brukner I., Dlakic M., Savic A., Susic S., Pongor S., Suck D. Evidence for opposite groove-directed curvature of GGGCCC and AAAAA sequence elements. Nucleic Acids Res. 1993 Feb 25;21(4):1025–1029. doi: 10.1093/nar/21.4.1025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chastain P. D., Sinden R. R. CTG repeats associated with human genetic disease are inherently flexible. J Mol Biol. 1998 Jan 23;275(3):405–411. doi: 10.1006/jmbi.1997.1502. [DOI] [PubMed] [Google Scholar]
  6. Chédin F., Dervyn E., Dervyn R., Ehrlich S. D., Noirot P. Frequency of deletion formation decreases exponentially with distance between short direct repeats. Mol Microbiol. 1994 May;12(4):561–569. doi: 10.1111/j.1365-2958.1994.tb01042.x. [DOI] [PubMed] [Google Scholar]
  7. Coffee B., Zhang F., Warren S. T., Reines D. Acetylated histones are associated with FMR1 in normal but not fragile X-syndrome cells. Nat Genet. 1999 May;22(1):98–101. doi: 10.1038/8807. [DOI] [PubMed] [Google Scholar]
  8. Dlakic M., Harrington R. E. Bending and torsional flexibility of G/C-rich sequences as determined by cyclization assays. J Biol Chem. 1995 Dec 15;270(50):29945–29952. doi: 10.1074/jbc.270.50.29945. [DOI] [PubMed] [Google Scholar]
  9. Filesi I., Cacchione S., De Santis P., Rossetti L., Savino M. The main role of the sequence-dependent DNA elasticity in determining the free energy of nucleosome formation on telomeric DNAs. Biophys Chem. 2000 Jan 24;83(3):223–237. doi: 10.1016/s0301-4622(99)00143-x. [DOI] [PubMed] [Google Scholar]
  10. Fujimoto B. S., Schurr J. M. Dependence of the torsional rigidity of DNA on base composition. Nature. 1990 Mar 8;344(6262):175–177. doi: 10.1038/344175a0. [DOI] [PubMed] [Google Scholar]
  11. Geahigan K. B., Meints G. A., Hatcher M. E., Orban J., Drobny G. P. The dynamic impact of CpG methylation in DNA. Biochemistry. 2000 Apr 25;39(16):4939–4946. doi: 10.1021/bi9917636. [DOI] [PubMed] [Google Scholar]
  12. Grove A., Galeone A., Mayol L., Geiduschek E. P. Localized DNA flexibility contributes to target site selection by DNA-bending proteins. J Mol Biol. 1996 Jul 12;260(2):120–125. doi: 10.1006/jmbi.1996.0386. [DOI] [PubMed] [Google Scholar]
  13. Hagerman P. J. Flexibility of DNA. Annu Rev Biophys Biophys Chem. 1988;17:265–286. doi: 10.1146/annurev.bb.17.060188.001405. [DOI] [PubMed] [Google Scholar]
  14. Harrington R. E., Winicov I. New concepts in protein-DNA recognition: sequence-directed DNA bending and flexibility. Prog Nucleic Acid Res Mol Biol. 1994;47:195–270. doi: 10.1016/s0079-6603(08)60253-6. [DOI] [PubMed] [Google Scholar]
  15. Hogan M. E., Austin R. H. Importance of DNA stiffness in protein-DNA binding specificity. Nature. 1987 Sep 17;329(6136):263–266. doi: 10.1038/329263a0. [DOI] [PubMed] [Google Scholar]
  16. Hogan M. E., Roberson M. W., Austin R. H. DNA flexibility variation may dominate DNase I cleavage. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9273–9277. doi: 10.1073/pnas.86.23.9273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hogan M. E., Rooney T. F., Austin R. H. Evidence for kinks in DNA folding in the nucleosome. Nature. 1987 Aug 6;328(6130):554–557. doi: 10.1038/328554a0. [DOI] [PubMed] [Google Scholar]
  18. Hustedt E. J., Kirchner J. J., Spaltenstein A., Hopkins P. B., Robinson B. H. Monitoring DNA dynamics using spin-labels with different independent mobilities. Biochemistry. 1995 Apr 4;34(13):4369–4375. doi: 10.1021/bi00013a028. [DOI] [PubMed] [Google Scholar]
  19. Hustedt E. J., Spaltenstein A., Kirchner J. J., Hopkins P. B., Robinson B. H. Motions of short DNA duplexes: an analysis of DNA dynamics using an EPR-active probe. Biochemistry. 1993 Feb 23;32(7):1774–1787. doi: 10.1021/bi00058a011. [DOI] [PubMed] [Google Scholar]
  20. Jayasena S. D., Behe M. J. Nucleosome reconstitution of core-length poly(dG).poly(dC) and poly(rG-dC).poly(rG-dC). Biochemistry. 1989 Feb 7;28(3):975–980. doi: 10.1021/bi00429a009. [DOI] [PubMed] [Google Scholar]
  21. Kim U. S., Fujimoto B. S., Furlong C. E., Sundstrom J. A., Humbert R., Teller D. C., Schurr J. M. Dynamics and structures of DNA: long-range effects of a 16 base-pair (CG)8 sequence on secondary structure. Biopolymers. 1993 Nov;33(11):1725–1745. doi: 10.1002/bip.360331110. [DOI] [PubMed] [Google Scholar]
  22. Luger K., Mäder A. W., Richmond R. K., Sargent D. F., Richmond T. J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 1997 Sep 18;389(6648):251–260. doi: 10.1038/38444. [DOI] [PubMed] [Google Scholar]
  23. Lundin M., Nehlin J. O., Ronne H. Importance of a flanking AT-rich region in target site recognition by the GC box-binding zinc finger protein MIG1. Mol Cell Biol. 1994 Mar;14(3):1979–1985. doi: 10.1128/mcb.14.3.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. McAteer K., Ellis P. D., Kennedy M. A. The effects of sequence context on base dynamics at TpA steps in DNA studied by NMR. Nucleic Acids Res. 1995 Oct 11;23(19):3962–3966. doi: 10.1093/nar/23.19.3962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. McAteer K., Kennedy M. A. NMR evidence for base dynamics at all TpA steps in DNA. J Biomol Struct Dyn. 2000 Jun;17(6):1001–1009. doi: 10.1080/07391102.2000.10506588. [DOI] [PubMed] [Google Scholar]
  26. Nardulli A. M., Romine L. E., Carpo C., Greene G. L., Rainish B. Estrogen receptor affinity and location of consensus and imperfect estrogen response elements influence transcription activation of simplified promoters. Mol Endocrinol. 1996 Jun;10(6):694–704. doi: 10.1210/mend.10.6.8776729. [DOI] [PubMed] [Google Scholar]
  27. Okonogi T. M., Alley S. C., Reese A. W., Hopkins P. B., Robinson B. H. Sequence-dependent dynamics in duplex DNA. Biophys J. 2000 May;78(5):2560–2571. doi: 10.1016/S0006-3495(00)76800-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Okonogi T. M., Reese A. W., Alley S. C., Hopkins P. B., Robinson B. H. Flexibility of duplex DNA on the submicrosecond timescale. Biophys J. 1999 Dec;77(6):3256–3276. doi: 10.1016/S0006-3495(99)77157-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Okonogi Tamara M., Alley Stephen C., Harwood Eric A., Hopkins Paul B., Robinson Bruce H. Phosphate backbone neutralization increases duplex DNA flexibility: a model for protein binding. Proc Natl Acad Sci U S A. 2002 Apr 2;99(7):4156–4160. doi: 10.1073/pnas.072067799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Parkhurst K. M., Richards R. M., Brenowitz M., Parkhurst L. J. Intermediate species possessing bent DNA are present along the pathway to formation of a final TBP-TATA complex. J Mol Biol. 1999 Jun 25;289(5):1327–1341. doi: 10.1006/jmbi.1999.2835. [DOI] [PubMed] [Google Scholar]
  31. Patikoglou G., Burley S. K. Eukaryotic transcription factor-DNA complexes. Annu Rev Biophys Biomol Struct. 1997;26:289–325. doi: 10.1146/annurev.biophys.26.1.289. [DOI] [PubMed] [Google Scholar]
  32. Pearson C. E., Sinden R. R. Trinucleotide repeat DNA structures: dynamic mutations from dynamic DNA. Curr Opin Struct Biol. 1998 Jun;8(3):321–330. doi: 10.1016/s0959-440x(98)80065-1. [DOI] [PubMed] [Google Scholar]
  33. Richmond T. J., Finch J. T., Rushton B., Rhodes D., Klug A. Structure of the nucleosome core particle at 7 A resolution. Nature. 1984 Oct 11;311(5986):532–537. doi: 10.1038/311532a0. [DOI] [PubMed] [Google Scholar]
  34. Robinson B. H., Drobny G. P. Site-specific dynamics in DNA: theory and experiment. Methods Enzymol. 1995;261:451–509. doi: 10.1016/s0076-6879(95)61021-9. [DOI] [PubMed] [Google Scholar]
  35. Robinson B. H., Drobny G. P. Site-specific dynamics in DNA: theory. Annu Rev Biophys Biomol Struct. 1995;24:523–549. doi: 10.1146/annurev.bb.24.060195.002515. [DOI] [PubMed] [Google Scholar]
  36. Schultz S. C., Shields G. C., Steitz T. A. Crystal structure of a CAP-DNA complex: the DNA is bent by 90 degrees. Science. 1991 Aug 30;253(5023):1001–1007. doi: 10.1126/science.1653449. [DOI] [PubMed] [Google Scholar]
  37. Schurr J. M., Delrow J. J., Fujimoto B. S., Benight A. S. The question of long-range allosteric transitions in DNA. Biopolymers. 1997;44(3):283–308. doi: 10.1002/(SICI)1097-0282(1997)44:3<283::AID-BIP7>3.0.CO;2-R. [DOI] [PubMed] [Google Scholar]
  38. Schurr J. M., Fujimoto B. S. The distribution of end-to-end distances of the weakly bending rod model. Biopolymers. 2000 Dec;54(7):561–571. doi: 10.1002/1097-0282(200012)54:7<561::AID-BIP80>3.0.CO;2-M. [DOI] [PubMed] [Google Scholar]
  39. Sinden R. R. Biological implications of the DNA structures associated with disease-causing triplet repeats. Am J Hum Genet. 1999 Feb;64(2):346–353. doi: 10.1086/302271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sivolob A. V., Khrapunov S. N. Translational positioning of nucleosomes on DNA: the role of sequence-dependent isotropic DNA bending stiffness. J Mol Biol. 1995 Apr 14;247(5):918–931. doi: 10.1006/jmbi.1994.0190. [DOI] [PubMed] [Google Scholar]
  41. Takahara P. M., Rosenzweig A. C., Frederick C. A., Lippard S. J. Crystal structure of double-stranded DNA containing the major adduct of the anticancer drug cisplatin. Nature. 1995 Oct 19;377(6550):649–652. doi: 10.1038/377649a0. [DOI] [PubMed] [Google Scholar]
  42. Thompson B. J., Camien M. N., Warner R. C. Kinetics of branch migration in double-stranded DNA. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2299–2303. doi: 10.1073/pnas.73.7.2299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Thåström A., Lowary P. T., Widlund H. R., Cao H., Kubista M., Widom J. Sequence motifs and free energies of selected natural and non-natural nucleosome positioning DNA sequences. J Mol Biol. 1999 Apr 30;288(2):213–229. doi: 10.1006/jmbi.1999.2686. [DOI] [PubMed] [Google Scholar]
  44. Widlund H. R., Kuduvalli P. N., Bengtsson M., Cao H., Tullius T. D., Kubista M. Nucleosome structural features and intrinsic properties of the TATAAACGCC repeat sequence. J Biol Chem. 1999 Nov 5;274(45):31847–31852. doi: 10.1074/jbc.274.45.31847. [DOI] [PubMed] [Google Scholar]
  45. Wolffe A. P. Architectural transcription factors. Science. 1994 May 20;264(5162):1100–1101. doi: 10.1126/science.8178167. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES