Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Dec;83(6):3460–3469. doi: 10.1016/S0006-3495(02)75345-9

Bacteriorhodopsin analog regenerated with 13-desmethyl-13-iodoretinal.

Kenji Hiraki 1, Toshiaki Hamanaka 1, Xiang-Guo Zheng 1, Teturo Shinada 1, Jong-Moon Kim 1, Kazuo Yoshihara 1, Yuji Kito 1
PMCID: PMC1302420  PMID: 12496112

Abstract

The retinal analog 13-desmethyl-13-iodoretinal (13-iodoretinal) was newly synthesized and incorporated into apomembranes to reconstitute bacteriorhodopsin analog 13-I-bR. The absorption maximum was 598 nm and 97% of the chromophore was an all-trans isomer in the dark- and light-adapted state. Upon flash illumination, 13-I-bR underwent a transient spectral change in which a shorter wavelength intermediate (lambda(max) = 426 nm) similar to the M species of the native bR developed. Also, 13-I-bR showed light-induced proton pumping with rates and extents comparable to those seen in the native bR. The ultraviolet circular dichroism (CD) spectrum originating from the aromatic groups was different from that of the native bR, indicating that the substituted bulky iodine atom strongly interacts with neighboring amino acids. A projection difference Fourier map showed the labeled iodine was in the vicinity of helix C. 13-I-bR is an advantageous specimen for kinetic investigations of light-induced structural changes associated with the proton pumping cycle by x-ray diffraction.

Full Text

The Full Text of this article is available as a PDF (328.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Becher B., Cassim J. Y. Effects of light adaptation on the purple membrane structure of Halobacterium halobium. Biophys J. 1976 Oct;16(10):1183–1200. doi: 10.1016/S0006-3495(76)85767-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cao Y., Váró G., Klinger A. L., Czajkowsky D. M., Braiman M. S., Needleman R., Lanyi J. K. Proton transfer from Asp-96 to the bacteriorhodopsin Schiff base is caused by a decrease of the pKa of Asp-96 which follows a protein backbone conformational change. Biochemistry. 1993 Mar 2;32(8):1981–1990. doi: 10.1021/bi00059a015. [DOI] [PubMed] [Google Scholar]
  3. Chang C. H., Govindjee R., Ebrey T., Bagley K. A., Dollinger G., Eisenstein L., Marque J., Roder H., Vittitow J., Fang J. M. Trans/13-cis isomerization is essential for both the photocycle and proton pumping of bacteriorhodopsin. Biophys J. 1985 Apr;47(4):509–512. doi: 10.1016/S0006-3495(85)83944-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Delaney J. K., Yahalom G., Sheves M., Subramaniam S. Reducing the flexibility of retinal restores a wild-type-like photocycle in bacteriorhodopsin mutants defective in protein-retinal coupling. Proc Natl Acad Sci U S A. 1997 May 13;94(10):5028–5033. doi: 10.1073/pnas.94.10.5028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dencher N. A., Burghaus P. A., Grzesiek S. Determination of the net proton-hydroxide ion permeability across vesicular lipid bilayers and membrane proteins by optical probes. Methods Enzymol. 1986;127:746–760. doi: 10.1016/0076-6879(86)27059-7. [DOI] [PubMed] [Google Scholar]
  6. Dencher N. A., Burghaus P. A., Grzesiek S. Determination of the net proton-hydroxide ion permeability across vesicular lipid bilayers and membrane proteins by optical probes. Methods Enzymol. 1986;127:746–760. doi: 10.1016/0076-6879(86)27059-7. [DOI] [PubMed] [Google Scholar]
  7. Edman K., Nollert P., Royant A., Belrhali H., Pebay-Peyroula E., Hajdu J., Neutze R., Landau E. M. High-resolution X-ray structure of an early intermediate in the bacteriorhodopsin photocycle. Nature. 1999 Oct 21;401(6755):822–826. doi: 10.1038/44623. [DOI] [PubMed] [Google Scholar]
  8. Govindjee R., Dancshazy Z., Ebrey T. G., Longstaff C., Rando R. R. Photochemistry of monomethylated and permethylated bacteriorhodopsin. Biophys J. 1988 Sep;54(3):557–562. doi: 10.1016/S0006-3495(88)82989-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Grigorieff N., Ceska T. A., Downing K. H., Baldwin J. M., Henderson R. Electron-crystallographic refinement of the structure of bacteriorhodopsin. J Mol Biol. 1996 Jun 14;259(3):393–421. doi: 10.1006/jmbi.1996.0328. [DOI] [PubMed] [Google Scholar]
  10. Hashimoto S., Obata K., Takeuchi H., Needleman R., Lanyi J. K. Ultraviolet resonance Raman spectra of Trp-182 and Trp-189 in bacteriorhodopsin: novel information on the structure of Trp-182 and its steric interaction with retinal. Biochemistry. 1997 Sep 30;36(39):11583–11590. doi: 10.1021/bi971404f. [DOI] [PubMed] [Google Scholar]
  11. Humphrey W., Logunov I., Schulten K., Sheves M. Molecular dynamics study of bacteriorhodopsin and artificial pigments. Biochemistry. 1994 Mar 29;33(12):3668–3678. doi: 10.1021/bi00178a025. [DOI] [PubMed] [Google Scholar]
  12. Jubb J. S., Worcester D. L., Crespi H. L., Zaccaï G. Retinal location in purple membrane of Halobacterium halobium: a neutron diffraction study of membranes labelled in vivo with deuterated retinal. EMBO J. 1984 Jul;3(7):1455–1461. doi: 10.1002/j.1460-2075.1984.tb01996.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Katre N. V., Wolber P. K., Stoeckenius W., Stroud R. M. Attachment site(s) of retinal in bacteriorhodopsin. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4068–4072. doi: 10.1073/pnas.78.7.4068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kimura Y., Vassylyev D. G., Miyazawa A., Kidera A., Matsushima M., Mitsuoka K., Murata K., Hirai T., Fujiyoshi Y. Surface of bacteriorhodopsin revealed by high-resolution electron crystallography. Nature. 1997 Sep 11;389(6647):206–211. doi: 10.1038/38323. [DOI] [PubMed] [Google Scholar]
  15. Lanyi J. K. Proton translocation mechanism and energetics in the light-driven pump bacteriorhodopsin. Biochim Biophys Acta. 1993 Dec 7;1183(2):241–261. doi: 10.1016/0005-2728(93)90226-6. [DOI] [PubMed] [Google Scholar]
  16. Luecke H., Schobert B., Richter H. T., Cartailler J. P., Lanyi J. K. Structural changes in bacteriorhodopsin during ion transport at 2 angstrom resolution. Science. 1999 Oct 8;286(5438):255–261. doi: 10.1126/science.286.5438.255. [DOI] [PubMed] [Google Scholar]
  17. Luecke H., Schobert B., Richter H. T., Cartailler J. P., Lanyi J. K. Structure of bacteriorhodopsin at 1.55 A resolution. J Mol Biol. 1999 Aug 27;291(4):899–911. doi: 10.1006/jmbi.1999.3027. [DOI] [PubMed] [Google Scholar]
  18. Oesterhelt D., Stoeckenius W. Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane. Methods Enzymol. 1974;31:667–678. doi: 10.1016/0076-6879(74)31072-5. [DOI] [PubMed] [Google Scholar]
  19. Oesterhelt D., Tittor J., Bamberg E. A unifying concept for ion translocation by retinal proteins. J Bioenerg Biomembr. 1992 Apr;24(2):181–191. doi: 10.1007/BF00762676. [DOI] [PubMed] [Google Scholar]
  20. Pebay-Peyroula E., Rummel G., Rosenbusch J. P., Landau E. M. X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. Science. 1997 Sep 12;277(5332):1676–1681. doi: 10.1126/science.277.5332.1676. [DOI] [PubMed] [Google Scholar]
  21. Racker E., Violand B., O'Neal S., Alfonzo M., Telford J. Reconstitution, a way of biochemical research; some new approaches to membrane-bound enzymes. Arch Biochem Biophys. 1979 Dec;198(2):470–477. doi: 10.1016/0003-9861(79)90521-6. [DOI] [PubMed] [Google Scholar]
  22. Retinal proteins. IVth International Conference on Retinal Proteins, Santa Cruz, California, 22-27 July 1990. Photochem Photobiol. 1991 Dec;54(6):873–1070. [PubMed] [Google Scholar]
  23. Royant A., Edman K., Ursby T., Pebay-Peyroula E., Landau E. M., Neutze R. Helix deformation is coupled to vectorial proton transport in the photocycle of bacteriorhodopsin. Nature. 2000 Aug 10;406(6796):645–648. doi: 10.1038/35020599. [DOI] [PubMed] [Google Scholar]
  24. Sass H. J., Büldt G., Gessenich R., Hehn D., Neff D., Schlesinger R., Berendzen J., Ormos P. Structural alterations for proton translocation in the M state of wild-type bacteriorhodopsin. Nature. 2000 Aug 10;406(6796):649–653. doi: 10.1038/35020607. [DOI] [PubMed] [Google Scholar]
  25. Stoeckenius W., Bogomolni R. A. Bacteriorhodopsin and related pigments of halobacteria. Annu Rev Biochem. 1982;51:587–616. doi: 10.1146/annurev.bi.51.070182.003103. [DOI] [PubMed] [Google Scholar]
  26. Subramaniam S., Henderson R. Molecular mechanism of vectorial proton translocation by bacteriorhodopsin. Nature. 2000 Aug 10;406(6796):653–657. doi: 10.1038/35020614. [DOI] [PubMed] [Google Scholar]
  27. Subramaniam S., Lindahl M., Bullough P., Faruqi A. R., Tittor J., Oesterhelt D., Brown L., Lanyi J., Henderson R. Protein conformational changes in the bacteriorhodopsin photocycle. J Mol Biol. 1999 Mar 19;287(1):145–161. doi: 10.1006/jmbi.1999.2589. [DOI] [PubMed] [Google Scholar]
  28. Suzuki T., Fujita Y., Noda Y., Miyata S. A simple procedure for the extraction of the native chromophore of visual pigments: the formaldehyde method. Vision Res. 1986;26(3):425–429. doi: 10.1016/0042-6989(86)90185-9. [DOI] [PubMed] [Google Scholar]
  29. Tu S. I., Shiuan D., Ramirez F., McKeever B. Effects of fluorescamine modification on light-induced H+-movement in reconstituted purple membrane of halobacteria. Biochem Biophys Res Commun. 1981 Mar 31;99(2):584–590. doi: 10.1016/0006-291x(81)91785-x. [DOI] [PubMed] [Google Scholar]
  30. Weidlich O., Schalt B., Friedman N., Sheves M., Lanyi J. K., Brown L. S., Siebert F. Steric interaction between the 9-methyl group of the retinal and tryptophan 182 controls 13-cis to all-trans reisomerization and proton uptake in the bacteriorhodopsin photocycle. Biochemistry. 1996 Aug 20;35(33):10807–10814. doi: 10.1021/bi960780h. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES