Abstract
The pressure dependence of the photocycle kinetics of bacteriorhodopsin from Halobacterium salinarium was investigated at pressures up to 4 kbar at 25 degrees C and 40 degrees C. The kinetics can be adequately modeled by nine apparent rate constants, which are assigned to irreversible transitions of a single relaxation chain of nine kinetically distinguishable states P(1) to P(9). All states except P(1) and P(9) consist of two or more spectral components. The kinetic states P(2) to P(6) comprise only the two fast equilibrating spectral states L and M. From the pressure dependence, the volume differences DeltaV(o)(LM) between these two spectral states could be determined that range from DeltaV(o)(LM) = -11.4 +/- 0.7 ml/mol (P(2)) to DeltaV(o)(LM) = 14.6 +/- 2.8 mL/mol (P(6)). A model is developed that explains the dependence of DeltaV(o)(LM) on the kinetic state by the electrostriction effect of charges, which are formed and neutralized during the L/M transition.
Full Text
The Full Text of this article is available as a PDF (253.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Althaus T., Stockburger M. Time and pH dependence of the L-to-M transition in the photocycle of bacteriorhodopsin and its correlation with proton release. Biochemistry. 1998 Mar 3;37(9):2807–2817. doi: 10.1021/bi9714969. [DOI] [PubMed] [Google Scholar]
- Balashov S. P. Protonation reactions and their coupling in bacteriorhodopsin. Biochim Biophys Acta. 2000 Aug 30;1460(1):75–94. doi: 10.1016/s0005-2728(00)00131-6. [DOI] [PubMed] [Google Scholar]
- Betancourt F. M., Glaeser R. M. Chemical and physical evidence for multiple functional steps comprising the M state of the bacteriorhodopsin photocycle. Biochim Biophys Acta. 2000 Aug 30;1460(1):106–118. doi: 10.1016/s0005-2728(00)00133-x. [DOI] [PubMed] [Google Scholar]
- Brandsburg-Zabary S., Fried O., Marantz Y., Nachliel E., Gutman M. Biophysical aspects of intra-protein proton transfer. Biochim Biophys Acta. 2000 May 12;1458(1):120–134. doi: 10.1016/s0005-2728(00)00063-3. [DOI] [PubMed] [Google Scholar]
- Checover S., Marantz Y., Nachliel E., Gutman M., Pfeiffer M., Tittor J., Oesterhelt D., Dencher N. A. Dynamics of the proton transfer reaction on the cytoplasmic surface of bacteriorhodopsin. Biochemistry. 2001 Apr 10;40(14):4281–4292. doi: 10.1021/bi002574m. [DOI] [PubMed] [Google Scholar]
- Chizhov I., Chernavskii D. S., Engelhard M., Mueller K. H., Zubov B. V., Hess B. Spectrally silent transitions in the bacteriorhodopsin photocycle. Biophys J. 1996 Nov;71(5):2329–2345. doi: 10.1016/S0006-3495(96)79475-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chizhov I., Engelhard M. Temperature and halide dependence of the photocycle of halorhodopsin from Natronobacterium pharaonis. Biophys J. 2001 Sep;81(3):1600–1612. doi: 10.1016/S0006-3495(01)75814-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chizhov I., Schmies G., Seidel R., Sydor J. R., Lüttenberg B., Engelhard M. The photophobic receptor from Natronobacterium pharaonis: temperature and pH dependencies of the photocycle of sensory rhodopsin II. Biophys J. 1998 Aug;75(2):999–1009. doi: 10.1016/S0006-3495(98)77588-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gottschalk M., Dencher N. A., Halle B. Microsecond exchange of internal water molecules in bacteriorhodopsin. J Mol Biol. 2001 Aug 17;311(3):605–621. doi: 10.1006/jmbi.2001.4895. [DOI] [PubMed] [Google Scholar]
- Gross M., Jaenicke R. Proteins under pressure. The influence of high hydrostatic pressure on structure, function and assembly of proteins and protein complexes. Eur J Biochem. 1994 Apr 15;221(2):617–630. doi: 10.1111/j.1432-1033.1994.tb18774.x. [DOI] [PubMed] [Google Scholar]
- Lozier R. H., Bogomolni R. A., Stoeckenius W. Bacteriorhodopsin: a light-driven proton pump in Halobacterium Halobium. Biophys J. 1975 Sep;15(9):955–962. doi: 10.1016/S0006-3495(75)85875-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marque J., Eisenstein L. Pressure effects on the photocycle of purple membrane. Biochemistry. 1984 Nov 6;23(23):5556–5563. doi: 10.1021/bi00318a027. [DOI] [PubMed] [Google Scholar]
- Mozhaev V. V., Heremans K., Frank J., Masson P., Balny C. High pressure effects on protein structure and function. Proteins. 1996 Jan;24(1):81–91. doi: 10.1002/(SICI)1097-0134(199601)24:1<81::AID-PROT6>3.0.CO;2-R. [DOI] [PubMed] [Google Scholar]
- Nagle J. F. Solving complex photocycle kinetics. Theory and direct method. Biophys J. 1991 Feb;59(2):476–487. doi: 10.1016/S0006-3495(91)82241-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oesterhelt D., Stoeckenius W. Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane. Methods Enzymol. 1974;31:667–678. doi: 10.1016/0076-6879(74)31072-5. [DOI] [PubMed] [Google Scholar]
- Oesterhelt D., Stoeckenius W. Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat New Biol. 1971 Sep 29;233(39):149–152. doi: 10.1038/newbio233149a0. [DOI] [PubMed] [Google Scholar]
- Schulenberg P. J., Rohr M., Gärtner W., Braslavsky S. E. Photoinduced volume changes associated with the early transformations of bacteriorhodopsin: a laser-induced optoacoustic spectroscopy study. Biophys J. 1994 Mar;66(3 Pt 1):838–843. doi: 10.1016/s0006-3495(94)80860-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spassov V. Z., Luecke H., Gerwert K., Bashford D. pK(a) Calculations suggest storage of an excess proton in a hydrogen-bonded water network in bacteriorhodopsin. J Mol Biol. 2001 Sep 7;312(1):203–219. doi: 10.1006/jmbi.2001.4902. [DOI] [PubMed] [Google Scholar]
- Tsuda M., Ebrey T. G. Effect of high pressure on the absorption spectrum and isomeric composition of bacteriorhodopsin. Biophys J. 1980 Apr;30(1):149–157. doi: 10.1016/S0006-3495(80)85083-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsuda M., Govindjee R., Ebrey T. G. Effects of pressure and temperature on the M412 intermediate of the bacteriorhodopsin photocycle. Implications for the phase transition of the purple membrane. Biophys J. 1983 Nov;44(2):249–254. doi: 10.1016/S0006-3495(83)84296-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Váró G., Lanyi J. K. Effects of hydrostatic pressure on the kinetics reveal a volume increase during the bacteriorhodopsin photocycle. Biochemistry. 1995 Sep 26;34(38):12161–12169. doi: 10.1021/bi00038a009. [DOI] [PubMed] [Google Scholar]
- Wang J., El-Sayed M. A. The effect of protein conformation change from alpha(II) to alpha(I) on the bacteriorhodopsin photocycle. Biophys J. 2000 Apr;78(4):2031–2036. doi: 10.1016/S0006-3495(00)76750-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zimányi L., Váró G., Chang M., Ni B., Needleman R., Lanyi J. K. Pathways of proton release in the bacteriorhodopsin photocycle. Biochemistry. 1992 Sep 15;31(36):8535–8543. doi: 10.1021/bi00151a022. [DOI] [PubMed] [Google Scholar]