Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Dec;83(6):3499–3506. doi: 10.1016/S0006-3495(02)75349-6

Resonance energy transfer in a calcium concentration-dependent cameleon protein.

Satoshi Habuchi 1, Mircea Cotlet 1, Johan Hofkens 1, Gunter Dirix 1, Jan Michiels 1, Jos Vanderleyden 1, Vinod Subramaniam 1, Frans C De Schryver 1
PMCID: PMC1302424  PMID: 12496116

Abstract

We report investigations of resonance energy transfer in the green fluorescent protein and calmodulin-based fluorescent indicator constructs for Ca(2+) called cameleons using steady-state and time-resolved spectroscopy of the full construct and of the component green fluorescent protein mutants, namely ECFP (donor) and EYFP (acceptor). EYFP displays a complicated photophysical behavior including protonated and deprotonated species involved in an excited-state proton transfer. When EYFP is excited in the absorption band of the protonated species, a fast nonradiative deactivation occurs involving almost 97% of the excited protonated population and leading to a low efficiency of excited-state proton transfer to the deprotonated species. ECFP displays a multiexponential fluorescence decay with a major contributing component of 3.2 ns. The time-resolved fluorescence data obtained upon excitation at 420 nm of Ca(2+)-free and Ca(2+)-bound YC3.1 cameleon constructs point to the existence of different conformations of calmodulin dependent on Ca(2+) binding. Whereas steady-state data show only an increase in the efficiency of energy transfer upon Ca(2+) binding, the time-resolved data demonstrate the existence of three distinct conformations/populations within the investigated sample. Although the mechanism of the interconversion between the different conformations and the extent of interconversion are still unclear, the time-resolved fluorescence data offer an estimation of the rate constants, of the efficiency of the energy transfer, and of the donor-acceptor distances in the Ca(2+)-free and Ca(2+)-bound YC3.1 samples.

Full Text

The Full Text of this article is available as a PDF (210.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Babu Y. S., Bugg C. E., Cook W. J. Structure of calmodulin refined at 2.2 A resolution. J Mol Biol. 1988 Nov 5;204(1):191–204. doi: 10.1016/0022-2836(88)90608-0. [DOI] [PubMed] [Google Scholar]
  2. Chalfie M., Tu Y., Euskirchen G., Ward W. W., Prasher D. C. Green fluorescent protein as a marker for gene expression. Science. 1994 Feb 11;263(5148):802–805. doi: 10.1126/science.8303295. [DOI] [PubMed] [Google Scholar]
  3. Chattoraj M., King B. A., Bublitz G. U., Boxer S. G. Ultra-fast excited state dynamics in green fluorescent protein: multiple states and proton transfer. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8362–8367. doi: 10.1073/pnas.93.16.8362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Creemers T. M., Lock A. J., Subramaniam V., Jovin T. M., Völker S. Three photoconvertible forms of green fluorescent protein identified by spectral hole-burning. Nat Struct Biol. 1999 Jun;6(6):557–560. doi: 10.1038/9335. [DOI] [PubMed] [Google Scholar]
  5. Dickson R. M., Cubitt A. B., Tsien R. Y., Moerner W. E. On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature. 1997 Jul 24;388(6640):355–358. doi: 10.1038/41048. [DOI] [PubMed] [Google Scholar]
  6. Garcia-Parajo M. F., Segers-Nolten G. M., Veerman J. A., Greve J., van Hulst N. F. Real-time light-driven dynamics of the fluorescence emission in single green fluorescent protein molecules. Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7237–7242. doi: 10.1073/pnas.97.13.7237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hirose K., Kadowaki S., Tanabe M., Takeshima H., Iino M. Spatiotemporal dynamics of inositol 1,4,5-trisphosphate that underlies complex Ca2+ mobilization patterns. Science. 1999 May 28;284(5419):1527–1530. doi: 10.1126/science.284.5419.1527. [DOI] [PubMed] [Google Scholar]
  8. Ikura M., Clore G. M., Gronenborn A. M., Zhu G., Klee C. B., Bax A. Solution structure of a calmodulin-target peptide complex by multidimensional NMR. Science. 1992 May 1;256(5057):632–638. doi: 10.1126/science.1585175. [DOI] [PubMed] [Google Scholar]
  9. Jensen K. K., Martini L., Schwartz T. W. Enhanced fluorescence resonance energy transfer between spectral variants of green fluorescent protein through zinc-site engineering. Biochemistry. 2001 Jan 30;40(4):938–945. doi: 10.1021/bi001765m. [DOI] [PubMed] [Google Scholar]
  10. Llopis J., McCaffery J. M., Miyawaki A., Farquhar M. G., Tsien R. Y. Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6803–6808. doi: 10.1073/pnas.95.12.6803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Llopis J., Westin S., Ricote M., Wang Z., Cho C. Y., Kurokawa R., Mullen T. M., Rose D. W., Rosenfeld M. G., Tsien R. Y. Ligand-dependent interactions of coactivators steroid receptor coactivator-1 and peroxisome proliferator-activated receptor binding protein with nuclear hormone receptors can be imaged in live cells and are required for transcription. Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):4363–4368. doi: 10.1073/pnas.97.8.4363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Meador W. E., Means A. R., Quiocho F. A. Target enzyme recognition by calmodulin: 2.4 A structure of a calmodulin-peptide complex. Science. 1992 Aug 28;257(5074):1251–1255. doi: 10.1126/science.1519061. [DOI] [PubMed] [Google Scholar]
  13. Miyawaki A., Griesbeck O., Heim R., Tsien R. Y. Dynamic and quantitative Ca2+ measurements using improved cameleons. Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):2135–2140. doi: 10.1073/pnas.96.5.2135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Miyawaki A., Llopis J., Heim R., McCaffery J. M., Adams J. A., Ikura M., Tsien R. Y. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature. 1997 Aug 28;388(6645):882–887. doi: 10.1038/42264. [DOI] [PubMed] [Google Scholar]
  15. Ormö M., Cubitt A. B., Kallio K., Gross L. A., Tsien R. Y., Remington S. J. Crystal structure of the Aequorea victoria green fluorescent protein. Science. 1996 Sep 6;273(5280):1392–1395. doi: 10.1126/science.273.5280.1392. [DOI] [PubMed] [Google Scholar]
  16. Patterson G. H., Piston D. W., Barisas B. G. Förster distances between green fluorescent protein pairs. Anal Biochem. 2000 Sep 10;284(2):438–440. doi: 10.1006/abio.2000.4708. [DOI] [PubMed] [Google Scholar]
  17. Presley J. F., Cole N. B., Schroer T. A., Hirschberg K., Zaal K. J., Lippincott-Schwartz J. ER-to-Golgi transport visualized in living cells. Nature. 1997 Sep 4;389(6646):81–85. doi: 10.1038/38001. [DOI] [PubMed] [Google Scholar]
  18. Truong K., Sawano A., Mizuno H., Hama H., Tong K. I., Mal T. K., Miyawaki A., Ikura M. FRET-based in vivo Ca2+ imaging by a new calmodulin-GFP fusion molecule. Nat Struct Biol. 2001 Dec;8(12):1069–1073. doi: 10.1038/nsb728. [DOI] [PubMed] [Google Scholar]
  19. Tsien R. Y. The green fluorescent protein. Annu Rev Biochem. 1998;67:509–544. doi: 10.1146/annurev.biochem.67.1.509. [DOI] [PubMed] [Google Scholar]
  20. Vanderklish P. W., Krushel L. A., Holst B. H., Gally J. A., Crossin K. L., Edelman G. M. Marking synaptic activity in dendritic spines with a calpain substrate exhibiting fluorescence resonance energy transfer. Proc Natl Acad Sci U S A. 2000 Feb 29;97(5):2253–2258. doi: 10.1073/pnas.040565597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Yang F., Moss L. G., Phillips G. N., Jr The molecular structure of green fluorescent protein. Nat Biotechnol. 1996 Oct;14(10):1246–1251. doi: 10.1038/nbt1096-1246. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES