Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Dec;83(6):3619–3625. doi: 10.1016/S0006-3495(02)75362-9

Glutaraldehyde modified mica: a new surface for atomic force microscopy of chromatin.

Hongda Wang 1, Ralph Bash 1, Jiya G Yodh 1, Gordon L Hager 1, D Lohr 1, Stuart M Lindsay 1
PMCID: PMC1302437  PMID: 12496129

Abstract

We have found that mica surfaces functionalized with aminopropyltriethoxysilane and aldehydes bind chromatin strongly enough to permit stable and reliable solution imaging by atomic force microscopy. The method is highly reproducible, uses very small amounts of material, and is successful even with very light degrees of surface modification. This surface is far superior to the widely used aminopropyltriethoxysilane-derivatized mica surface and permits resolution of structure on the nanometer-scale in an aqueous environment, conditions that are particularly important for chromatin studies. For example, bound nucleosomal arrays demonstrate major structural changes in response to changes in solution conditions, despite their prior fixation (to maintain nucleosome loading) and tethering to the surface with glutaraldehyde. By following individual molecules through a salt titration in a flow-through cell, one can observe significant changes in apparent nucleosome size at lower [salt] and complete loss of DNA from the polynucleosomal array at high salt. The latter result demonstrates that the DNA component in these arrays is not constrained by the tethering. The former result is consistent with the salt-induced loss of histones observed in bulk solution studies of chromatin and demonstrates that even histone components of the nucleosome are somewhat labile in these fixed and tethered arrays. We foresee many important applications for this surface in future atomic force microscopy studies of chromatin.

Full Text

The Full Text of this article is available as a PDF (314.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen M. J., Dong X. F., O'Neill T. E., Yau P., Kowalczykowski S. C., Gatewood J., Balhorn R., Bradbury E. M. Atomic force microscope measurements of nucleosome cores assembled along defined DNA sequences. Biochemistry. 1993 Aug 24;32(33):8390–8396. doi: 10.1021/bi00084a002. [DOI] [PubMed] [Google Scholar]
  2. Bash R. C., Yodh J., Lyubchenko Y., Woodbury N., Lohr D. Population analysis of subsaturated 172-12 nucleosomal arrays by atomic force microscopy detects nonrandom behavior that is favored by histone acetylation and short repeat length. J Biol Chem. 2001 Oct 2;276(51):48362–48370. doi: 10.1074/jbc.M104916200. [DOI] [PubMed] [Google Scholar]
  3. Chalkley R., Hunter C. Histone-histone propinquity by aldehyde fixation of chromatin. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1304–1308. doi: 10.1073/pnas.72.4.1304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fletcher T. M., Hansen J. C. The nucleosomal array: structure/function relationships. Crit Rev Eukaryot Gene Expr. 1996;6(2-3):149–188. doi: 10.1615/critreveukargeneexpr.v6.i2-3.40. [DOI] [PubMed] [Google Scholar]
  5. Fletcher T. M., Ryu B. W., Baumann C. T., Warren B. S., Fragoso G., John S., Hager G. L. Structure and dynamic properties of a glucocorticoid receptor-induced chromatin transition. Mol Cell Biol. 2000 Sep;20(17):6466–6475. doi: 10.1128/mcb.20.17.6466-6475.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fragoso G., John S., Roberts M. S., Hager G. L. Nucleosome positioning on the MMTV LTR results from the frequency-biased occupancy of multiple frames. Genes Dev. 1995 Aug 1;9(15):1933–1947. doi: 10.1101/gad.9.15.1933. [DOI] [PubMed] [Google Scholar]
  7. Fritzsche W., Henderson E. Chicken erythrocyte nucleosomes have a defined orientation along the linker DNA--a scanning force microscopy study. Scanning. 1997 Jan;19(1):42–47. doi: 10.1002/sca.4950190106. [DOI] [PubMed] [Google Scholar]
  8. Hager G. L. Understanding nuclear receptor function: from DNA to chromatin to the interphase nucleus. Prog Nucleic Acid Res Mol Biol. 2001;66:279–305. doi: 10.1016/s0079-6603(00)66032-4. [DOI] [PubMed] [Google Scholar]
  9. Hansma H. G., Laney D. E. DNA binding to mica correlates with cationic radius: assay by atomic force microscopy. Biophys J. 1996 Apr;70(4):1933–1939. doi: 10.1016/S0006-3495(96)79757-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Leuba S. H., Yang G., Robert C., Samori B., van Holde K., Zlatanova J., Bustamante C. Three-dimensional structure of extended chromatin fibers as revealed by tapping-mode scanning force microscopy. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11621–11625. doi: 10.1073/pnas.91.24.11621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Luger K., Richmond T. J. The histone tails of the nucleosome. Curr Opin Genet Dev. 1998 Apr;8(2):140–146. doi: 10.1016/s0959-437x(98)80134-2. [DOI] [PubMed] [Google Scholar]
  12. Lyubchenko Y. L., Oden P. I., Lampner D., Lindsay S. M., Dunker K. A. Atomic force microscopy of DNA and bacteriophage in air, water and propanol: the role of adhesion forces. Nucleic Acids Res. 1993 Mar 11;21(5):1117–1123. doi: 10.1093/nar/21.5.1117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Martin L. D., Vesenka J. P., Henderson E., Dobbs D. L. Visualization of nucleosomal substructure in native chromatin by atomic force microscopy. Biochemistry. 1995 Apr 11;34(14):4610–4616. doi: 10.1021/bi00014a014. [DOI] [PubMed] [Google Scholar]
  14. Müller D. J., Engel A. The height of biomolecules measured with the atomic force microscope depends on electrostatic interactions. Biophys J. 1997 Sep;73(3):1633–1644. doi: 10.1016/S0006-3495(97)78195-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Richards F. M., Knowles J. R. Glutaraldehyde as a protein cross-linkage reagent. J Mol Biol. 1968 Oct 14;37(1):231–233. doi: 10.1016/0022-2836(68)90086-7. [DOI] [PubMed] [Google Scholar]
  16. Sato M. H., Ura K., Hohmura K. I., Tokumasu F., Yoshimura S. H., Hanaoka F., Takeyasu K. Atomic force microscopy sees nucleosome positioning and histone H1-induced compaction in reconstituted chromatin. FEBS Lett. 1999 Jun 11;452(3):267–271. doi: 10.1016/s0014-5793(99)00644-4. [DOI] [PubMed] [Google Scholar]
  17. Schnitzler G. R., Cheung C. L., Hafner J. H., Saurin A. J., Kingston R. E., Lieber C. M. Direct imaging of human SWI/SNF-remodeled mono- and polynucleosomes by atomic force microscopy employing carbon nanotube tips. Mol Cell Biol. 2001 Dec;21(24):8504–8511. doi: 10.1128/MCB.21.24.8504-8511.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sewell B. T., Bouloukos C., von Holt C. Formaldehyde and glutaraldehyde in the fixation of chromatin for electron microscopy. J Microsc. 1984 Oct;136(Pt 1):103–112. doi: 10.1111/j.1365-2818.1984.tb02550.x. [DOI] [PubMed] [Google Scholar]
  19. Simpson R. T., Thoma F., Brubaker J. M. Chromatin reconstituted from tandemly repeated cloned DNA fragments and core histones: a model system for study of higher order structure. Cell. 1985 Oct;42(3):799–808. doi: 10.1016/0092-8674(85)90276-4. [DOI] [PubMed] [Google Scholar]
  20. Ternynck T., Avrameas S. Polyacrylamide-protein immunoadsorbents prepared with glutaraldehyde. FEBS Lett. 1972 Jun 1;23(1):24–28. doi: 10.1016/0014-5793(72)80274-6. [DOI] [PubMed] [Google Scholar]
  21. Vesenka J., Guthold M., Tang C. L., Keller D., Delaine E., Bustamante C. Substrate preparation for reliable imaging of DNA molecules with the scanning force microscope. Ultramicroscopy. 1992 Jul;42-44(Pt B):1243–1249. doi: 10.1016/0304-3991(92)90430-r. [DOI] [PubMed] [Google Scholar]
  22. Yodh J. G., Lyubchenko Y. L., Shlyakhtenko L. S., Woodbury N., Lohr D. Evidence for nonrandom behavior in 208-12 subsaturated nucleosomal array populations analyzed by AFM. Biochemistry. 1999 Nov 30;38(48):15756–15763. doi: 10.1021/bi991034q. [DOI] [PubMed] [Google Scholar]
  23. Yodh Jaya G., Woodbury Neal, Shlyakhtenko Luda S., Lyubchenko Yuri L., Lohr D. Mapping nucleosome locations on the 208-12 by AFM provides clear evidence for cooperativity in array occupation. Biochemistry. 2002 Mar 19;41(11):3565–3574. doi: 10.1021/bi011612e. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES