Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Jan;82(1 Pt 1):156–159. doi: 10.1016/S0006-3495(02)75382-4

Surface potentials and the calculated selectivity of ion channels.

Henk Miedema 1
PMCID: PMC1302457  PMID: 11751304

Abstract

Ion channels catalyze the transport of ions across biological membranes. A proper understanding of ion-channel functioning is essential to our knowledge of cell physiology, and, in this context, ion-channel selectivity is a key concept. The extent to which a channel permeates two ion species, a and b, is expressed by the permeability ratio, P(a)/P(b). This paper addresses a complication in the calculation of P(a)/P(b) that is related to the existence of surface potentials (psi) and that so far has not been fully appreciated. This paper shows the rather surprising effect of psi on the calculated P(a)/P(b) of a channel that is permeable to two ion species of different valence. If we ignore psi, we conclude, for instance, P(a) > P(b). If we implement psi in the calculation of P(a)/P(b), we may, however, conclude exactly the reverse, i.e., P(a) < P(b). Because electrostatic potentials arise at the surface of essentially all biological membranes, this paper argues for a more critical evaluation of ion channel selectivity measurements.

Full Text

The Full Text of this article is available as a PDF (57.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aqvist J., Luzhkov V. Ion permeation mechanism of the potassium channel. Nature. 2000 Apr 20;404(6780):881–884. doi: 10.1038/35009114. [DOI] [PubMed] [Google Scholar]
  2. Banach K., Ramanan S. V., Brink P. R. The influence of surface charges on the conductance of the human connexin37 gap junction channel. Biophys J. 2000 Feb;78(2):752–760. doi: 10.1016/S0006-3495(00)76633-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Begenisich T. Magnitude and location of surface charges on Myxicola giant axons. J Gen Physiol. 1975 Jul;66(1):47–65. doi: 10.1085/jgp.66.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Borisenko V., Sansom M. S., Woolley G. A. Protonation of lysine residues inverts cation/anion selectivity in a model channel. Biophys J. 2000 Mar;78(3):1335–1348. doi: 10.1016/s0006-3495(00)76688-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brauer D. K., Yermiyahu U., Rytwo G., Kinraide T. B. Characteristics of the quenching of 9-aminoacridine fluorescence by liposomes made from plant lipids. J Membr Biol. 2000 Nov 1;178(1):43–48. doi: 10.1007/s002320010013. [DOI] [PubMed] [Google Scholar]
  6. Cai M., Jordan P. C. How does vestibule surface charge affect ion conduction and toxin binding in a sodium channel? Biophys J. 1990 Apr;57(4):883–891. doi: 10.1016/S0006-3495(90)82608-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cens T., Dalle C., Charnet P. Expression of beta subunit modulates surface potential sensing by calcium channels. Pflugers Arch. 1998 May;435(6):865–867. doi: 10.1007/s004240050595. [DOI] [PubMed] [Google Scholar]
  8. Cornish-Bowden A. Enzyme specificity: its meaning in the general case. J Theor Biol. 1984 Jun 7;108(3):451–457. doi: 10.1016/s0022-5193(84)80045-4. [DOI] [PubMed] [Google Scholar]
  9. Dani J. A. Ion-channel entrances influence permeation. Net charge, size, shape, and binding considerations. Biophys J. 1986 Mar;49(3):607–618. doi: 10.1016/S0006-3495(86)83688-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Doyle D. A., Morais Cabral J., Pfuetzner R. A., Kuo A., Gulbis J. M., Cohen S. L., Chait B. T., MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998 Apr 3;280(5360):69–77. doi: 10.1126/science.280.5360.69. [DOI] [PubMed] [Google Scholar]
  11. Eisenberg R. S. Channels as enzymes. J Membr Biol. 1990 Apr;115(1):1–12. doi: 10.1007/BF01869101. [DOI] [PubMed] [Google Scholar]
  12. Eisenman G., Horn R. Ionic selectivity revisited: the role of kinetic and equilibrium processes in ion permeation through channels. J Membr Biol. 1983;76(3):197–225. doi: 10.1007/BF01870364. [DOI] [PubMed] [Google Scholar]
  13. Elinder F., Arhem P. Role of individual surface charges of voltage-gated K channels. Biophys J. 1999 Sep;77(3):1358–1362. doi: 10.1016/S0006-3495(99)76984-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Green W. N., Andersen O. S. Surface charges and ion channel function. Annu Rev Physiol. 1991;53:341–359. doi: 10.1146/annurev.ph.53.030191.002013. [DOI] [PubMed] [Google Scholar]
  15. Hille B., Woodhull A. M., Shapiro B. I. Negative surface charge near sodium channels of nerve: divalent ions, monovalent ions, and pH. Philos Trans R Soc Lond B Biol Sci. 1975 Jun 10;270(908):301–318. doi: 10.1098/rstb.1975.0011. [DOI] [PubMed] [Google Scholar]
  16. Jan L. Y., Jan Y. N. Tracing the roots of ion channels. Cell. 1992 May 29;69(5):715–718. doi: 10.1016/0092-8674(92)90280-p. [DOI] [PubMed] [Google Scholar]
  17. Jordan P. C. How pore mouth charge distributions alter the permeability of transmembrane ionic channels. Biophys J. 1987 Feb;51(2):297–311. doi: 10.1016/S0006-3495(87)83336-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kraayenhof R., Sterk G. J., Sang H. W. Probing biomembrane interfacial potential and pH profiles with a new type of float-like fluorophores positioned at varying distance from the membrane surface. Biochemistry. 1993 Sep 28;32(38):10057–10066. doi: 10.1021/bi00089a022. [DOI] [PubMed] [Google Scholar]
  19. Latorre R., Labarca P., Naranjo D. Surface charge effects on ion conduction in ion channels. Methods Enzymol. 1992;207:471–501. doi: 10.1016/0076-6879(92)07034-l. [DOI] [PubMed] [Google Scholar]
  20. Lewis C. A. Ion-concentration dependence of the reversal potential and the single channel conductance of ion channels at the frog neuromuscular junction. J Physiol. 1979 Jan;286:417–445. doi: 10.1113/jphysiol.1979.sp012629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. McLaughlin S. G., Szabo G., Eisenman G., Ciani S. M. Surface charge and the conductance of phospholipid membranes. Proc Natl Acad Sci U S A. 1970 Nov;67(3):1268–1275. doi: 10.1073/pnas.67.3.1268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. McLaughlin S. G., Szabo G., Eisenman G. Divalent ions and the surface potential of charged phospholipid membranes. J Gen Physiol. 1971 Dec;58(6):667–687. doi: 10.1085/jgp.58.6.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. McLaughlin S. The electrostatic properties of membranes. Annu Rev Biophys Biophys Chem. 1989;18:113–136. doi: 10.1146/annurev.bb.18.060189.000553. [DOI] [PubMed] [Google Scholar]
  24. Miller C. Ion channels: doing hard chemistry with hard ions. Curr Opin Chem Biol. 2000 Apr;4(2):148–151. doi: 10.1016/s1367-5931(99)00068-x. [DOI] [PubMed] [Google Scholar]
  25. Naranjo D., Latorre R., Cherbavaz D., McGill P., Schumaker M. F. A simple model for surface charge on ion channel proteins. Biophys J. 1994 Jan;66(1):59–70. doi: 10.1016/S0006-3495(94)80750-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Peitzsch R. M., Eisenberg M., Sharp K. A., McLaughlin S. Calculations of the electrostatic potential adjacent to model phospholipid bilayers. Biophys J. 1995 Mar;68(3):729–738. doi: 10.1016/S0006-3495(95)80253-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rostovtseva T. K., Aguilella V. M., Vodyanoy I., Bezrukov S. M., Parsegian V. A. Membrane surface-charge titration probed by gramicidin A channel conductance. Biophys J. 1998 Oct;75(4):1783–1792. doi: 10.1016/S0006-3495(98)77620-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Roux B., MacKinnon R. The cavity and pore helices in the KcsA K+ channel: electrostatic stabilization of monovalent cations. Science. 1999 Jul 2;285(5424):100–102. doi: 10.1126/science.285.5424.100. [DOI] [PubMed] [Google Scholar]
  29. Roux B. Statistical mechanical equilibrium theory of selective ion channels. Biophys J. 1999 Jul;77(1):139–153. doi: 10.1016/S0006-3495(99)76878-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Syganow A., von Kitzing E. (In)validity of the constant field and constant currents assumptions in theories of ion transport. Biophys J. 1999 Feb;76(2):768–781. doi: 10.1016/S0006-3495(99)77242-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Trexler E. B., Bukauskas F. F., Kronengold J., Bargiello T. A., Verselis V. K. The first extracellular loop domain is a major determinant of charge selectivity in connexin46 channels. Biophys J. 2000 Dec;79(6):3036–3051. doi: 10.1016/S0006-3495(00)76539-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Yermiyahu U., Rytwo G., Brauer D. K., Kinraide T. B. Binding and electrostatic attraction of lanthanum (La3+) and aluminum (Al3+) to wheat root plasma membranes. J Membr Biol. 1997 Oct 1;159(3):239–252. doi: 10.1007/s002329900287. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES