Abstract
The membrane insertion behavior of two peptides, Magainin2 and M2 delta, was investigated by applying the Monte Carlo simulation technique to a theoretical model. The model included many novel aspects, such as a new semi-empirical lipid bilayer model and a new set of semi-empirical transfer energies, which reproduced the experimental insertion behavior of Magainin2 and M2 delta without parameter fitting. Additionally, we have taken into account diminished internal (intramolecular) hydrogen bonding at the N- and C-termini of helical peptides. All simulations were carried out at 305 K, above the membrane thermal phase transition temperature, and at pH 7.0. The peptide equilibrium conformations are discussed for a range of bilayers with tail polarities varying from octanol-like to alkane-like. Probability distributions of the individual amino-acid-residue positions show the dynamic nature of these equilibrium conformations. Two different insertion mechanisms for M2 delta, and a translocation mechanism for Magainin2, are described. A study of the effect of bilayer thickness on M2 delta insertion suggests a critical thickness above which insertion is unfavorable. Additionally, we did not need to use an orientational potential or array of hard cylinders to persuade M2 delta to insert perpendicular to the membrane surface. Instead, we found that diminished internal hydrogen bonding in the helical conformation anchored the termini in the headgroups and resulted in a nearly perpendicular orientation.
Full Text
The Full Text of this article is available as a PDF (293.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baumgärtner A. Insertion and hairpin formation of membrane proteins: a Monte Carlo study. Biophys J. 1996 Sep;71(3):1248–1255. doi: 10.1016/S0006-3495(96)79324-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bechinger B. Biophysical investigations of membrane perturbations by polypeptides using solid-state NMR spectroscopy (review). Mol Membr Biol. 2000 Jul-Sep;17(3):135–142. doi: 10.1080/09687680050197365. [DOI] [PubMed] [Google Scholar]
- Bechinger B., Kim Y., Chirlian L. E., Gesell J., Neumann J. M., Montal M., Tomich J., Zasloff M., Opella S. J. Orientations of amphipathic helical peptides in membrane bilayers determined by solid-state NMR spectroscopy. J Biomol NMR. 1991 Jul;1(2):167–173. doi: 10.1007/BF01877228. [DOI] [PubMed] [Google Scholar]
- Belohorcová K., Davis J. H., Woolf T. B., Roux B. Structure and dynamics of an amphiphilic peptide in a lipid bilayer: a molecular dynamics study. Biophys J. 1997 Dec;73(6):3039–3055. doi: 10.1016/S0006-3495(97)78332-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ben-Shaul A., Ben-Tal N., Honig B. Statistical thermodynamic analysis of peptide and protein insertion into lipid membranes. Biophys J. 1996 Jul;71(1):130–137. doi: 10.1016/S0006-3495(96)79208-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bernèche S., Nina M., Roux B. Molecular dynamics simulation of melittin in a dimyristoylphosphatidylcholine bilayer membrane. Biophys J. 1998 Oct;75(4):1603–1618. doi: 10.1016/S0006-3495(98)77604-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Biggin P. C., Sansom M. S. Interactions of alpha-helices with lipid bilayers: a review of simulation studies. Biophys Chem. 1999 Feb 22;76(3):161–183. doi: 10.1016/s0301-4622(98)00233-6. [DOI] [PubMed] [Google Scholar]
- Cantor R. S. Solute modulation of conformational equilibria in intrinsic membrane proteins: apparent "cooperativity" without binding. Biophys J. 1999 Nov;77(5):2643–2647. doi: 10.1016/S0006-3495(99)77098-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carr C. M., Chaudhry C., Kim P. S. Influenza hemagglutinin is spring-loaded by a metastable native conformation. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14306–14313. doi: 10.1073/pnas.94.26.14306. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Channareddy S., Janes N. Direct determination of hydration in the interdigitated and ripple phases of dihexadecylphosphatidylcholine: hydration of a hydrophobic cavity at the membrane/water interface. Biophys J. 1999 Oct;77(4):2046–2050. doi: 10.1016/S0006-3495(99)77045-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chou T., Kim K. S., Oster G. Statistical thermodynamics of membrane bending-mediated protein-protein attractions. Biophys J. 2001 Mar;80(3):1075–1087. doi: 10.1016/S0006-3495(01)76086-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dan N. Formation of ordered domains in membrane-bound DNA. Biophys J. 1996 Sep;71(3):1267–1272. doi: 10.1016/S0006-3495(96)79326-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dan N., Safran S. A. Effect of lipid characteristics on the structure of transmembrane proteins. Biophys J. 1998 Sep;75(3):1410–1414. doi: 10.1016/S0006-3495(98)74059-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Efremov R. G., Nolde D. E., Vergoten G., Arseniev A. S. A solvent model for simulations of peptides in bilayers. I. Membrane-promoting alpha-helix formation. Biophys J. 1999 May;76(5):2448–2459. doi: 10.1016/S0006-3495(99)77400-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Efremov R. G., Nolde D. E., Vergoten G., Arseniev A. S. A solvent model for simulations of peptides in bilayers. II. Membrane-spanning alpha-helices. Biophys J. 1999 May;76(5):2460–2471. doi: 10.1016/S0006-3495(99)77401-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Engelman D. M., Steitz T. A., Goldman A. Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. Annu Rev Biophys Biophys Chem. 1986;15:321–353. doi: 10.1146/annurev.bb.15.060186.001541. [DOI] [PubMed] [Google Scholar]
- Engelman D. M., Steitz T. A. The spontaneous insertion of proteins into and across membranes: the helical hairpin hypothesis. Cell. 1981 Feb;23(2):411–422. doi: 10.1016/0092-8674(81)90136-7. [DOI] [PubMed] [Google Scholar]
- Gregoret L. M., Cohen F. E. Novel method for the rapid evaluation of packing in protein structures. J Mol Biol. 1990 Feb 20;211(4):959–974. doi: 10.1016/0022-2836(90)90086-2. [DOI] [PubMed] [Google Scholar]
- Griffith O. H., Dehlinger P. J., Van S. P. Shape of the hydrophobic barrier of phospholipid bilayers (evidence for water penetration in biological membranes). J Membr Biol. 1974;15(2):159–192. doi: 10.1007/BF01870086. [DOI] [PubMed] [Google Scholar]
- Ho C., Slater S. J., Stubbs C. D. Hydration and order in lipid bilayers. Biochemistry. 1995 May 9;34(18):6188–6195. doi: 10.1021/bi00018a023. [DOI] [PubMed] [Google Scholar]
- Jacobs R. E., White S. H. The nature of the hydrophobic binding of small peptides at the bilayer interface: implications for the insertion of transbilayer helices. Biochemistry. 1989 Apr 18;28(8):3421–3437. doi: 10.1021/bi00434a042. [DOI] [PubMed] [Google Scholar]
- Jain M. K., Rogers J., Simpson L., Gierasch L. M. Effect of tryptophan derivatives on the phase properties of bilayers. Biochim Biophys Acta. 1985 Jun 11;816(1):153–162. doi: 10.1016/0005-2736(85)90403-1. [DOI] [PubMed] [Google Scholar]
- Kersh G. J., Tomich J. M., Montal M. The M2 delta transmembrane domain of the nicotinic cholinergic receptor forms ion channels in human erythrocyte membranes. Biochem Biophys Res Commun. 1989 Jul 14;162(1):352–356. doi: 10.1016/0006-291x(89)92003-2. [DOI] [PubMed] [Google Scholar]
- Klotz I. M., Farnham S. B. Stability of an amide-hydrogen bond in an apolar environment. Biochemistry. 1968 Nov;7(11):3879–3882. doi: 10.1021/bi00851a013. [DOI] [PubMed] [Google Scholar]
- Krescheck G. C., Klotz I. M. The thermodynamics of transfer of amides from an apolar to an aqueous solution. Biochemistry. 1969 Jan;8(1):8–12. doi: 10.1021/bi00829a002. [DOI] [PubMed] [Google Scholar]
- Longo M. L., Waring A. J., Hammer D. A. Interaction of the influenza hemagglutinin fusion peptide with lipid bilayers: area expansion and permeation. Biophys J. 1997 Sep;73(3):1430–1439. doi: 10.1016/S0006-3495(97)78175-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McIntosh T. J., Simon S. A. Contributions of hydration and steric (entropic) pressures to the interactions between phosphatidylcholine bilayers: experiments with the subgel phase. Biochemistry. 1993 Aug 17;32(32):8374–8384. doi: 10.1021/bi00083a042. [DOI] [PubMed] [Google Scholar]
- Milik M., Skolnick J. A Monte Carlo model of fd and Pf1 coat proteins in lipid membranes. Biophys J. 1995 Oct;69(4):1382–1386. doi: 10.1016/S0006-3495(95)80007-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Milik M., Skolnick J. Insertion of peptide chains into lipid membranes: an off-lattice Monte Carlo dynamics model. Proteins. 1993 Jan;15(1):10–25. doi: 10.1002/prot.340150104. [DOI] [PubMed] [Google Scholar]
- Milik M., Skolnick J. Spontaneous insertion of polypeptide chains into membranes: a Monte Carlo model. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9391–9395. doi: 10.1073/pnas.89.20.9391. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nicol F., Nir S., Szoka F. C., Jr Effect of phospholipid composition on an amphipathic peptide-mediated pore formation in bilayer vesicles. Biophys J. 2000 Feb;78(2):818–829. doi: 10.1016/S0006-3495(00)76639-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reynolds J. A., Gilbert D. B., Tanford C. Empirical correlation between hydrophobic free energy and aqueous cavity surface area. Proc Natl Acad Sci U S A. 1974 Aug;71(8):2925–2927. doi: 10.1073/pnas.71.8.2925. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Richards F. M. Areas, volumes, packing and protein structure. Annu Rev Biophys Bioeng. 1977;6:151–176. doi: 10.1146/annurev.bb.06.060177.001055. [DOI] [PubMed] [Google Scholar]
- Rose G. D., Geselowitz A. R., Lesser G. J., Lee R. H., Zehfus M. H. Hydrophobicity of amino acid residues in globular proteins. Science. 1985 Aug 30;229(4716):834–838. doi: 10.1126/science.4023714. [DOI] [PubMed] [Google Scholar]
- Roseman M. A. Hydrophilicity of polar amino acid side-chains is markedly reduced by flanking peptide bonds. J Mol Biol. 1988 Apr 5;200(3):513–522. doi: 10.1016/0022-2836(88)90540-2. [DOI] [PubMed] [Google Scholar]
- Roseman M. A. Hydrophobicity of the peptide C=O...H-N hydrogen-bonded group. J Mol Biol. 1988 Jun 5;201(3):621–623. doi: 10.1016/0022-2836(88)90642-0. [DOI] [PubMed] [Google Scholar]
- White J. M. Membrane fusion. Science. 1992 Nov 6;258(5084):917–924. doi: 10.1126/science.1439803. [DOI] [PubMed] [Google Scholar]
- Zasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5449–5453. doi: 10.1073/pnas.84.15.5449. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhou Z., Macosko J. C., Hughes D. W., Sayer B. G., Hawes J., Epand R. M. 15N NMR study of the ionization properties of the influenza virus fusion peptide in zwitterionic phospholipid dispersions. Biophys J. 2000 May;78(5):2418–2425. doi: 10.1016/S0006-3495(00)76785-3. [DOI] [PMC free article] [PubMed] [Google Scholar]