Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Jan;82(1 Pt 1):378–390. doi: 10.1016/S0006-3495(02)75402-7

The calculated in vitro and in vivo chlorophyll a absorption bandshape.

Giuseppe Zucchelli 1, Robert C Jennings 1, Flavio M Garlaschi 1, Gianfelice Cinque 1, Roberto Bassi 1, Oliviero Cremonesi 1
PMCID: PMC1302477  PMID: 11751324

Abstract

The room temperature absorption bandshape for the Q transition region of chlorophyll a is calculated using the vibrational frequency modes and Franck-Condon (FC) factors obtained by line-narrowing spectroscopies of chlorophyll a in a glassy (Rebane and Avarmaa, Chem. Phys. 1982; 68:191-200) and in a native environment (Gillie et al., J. Phys. Chem. 1989; 93:1620-1627) at low temperatures. The calculated bandshapes are compared with the absorption spectra of chlorophyll a measured in two different solvents and with that obtained in vivo by a mutational analysis of a chlorophyll-protein complex. It is demonstrated that the measured distributions of FC factors can account for the absorption bandshape of chlorophyll a in a hexacoordinated state, whereas, when pentacoordinated, reduced FC coupling for vibrational frequencies in the range 540-850 cm(-1) occurs. The FC factor distribution for pentacoordinated chlorophyll also describes the native chlorophyll a spectrum but, in this case, either a low-frequency mode (nu < 200 cm(-1)) must be added or else the 262-cm(-1) mode must increase in coupling by about one order of magnitude to describe the skewness of the main absorption bandshape.

Full Text

The Full Text of this article is available as a PDF (250.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bassi R., Croce R., Cugini D., Sandonà D. Mutational analysis of a higher plant antenna protein provides identification of chromophores bound into multiple sites. Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10056–10061. doi: 10.1073/pnas.96.18.10056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boekema E. J., van Breemen J. F., van Roon H., Dekker J. P. Arrangement of photosystem II supercomplexes in crystalline macrodomains within the thylakoid membrane of green plant chloroplasts. J Mol Biol. 2000 Sep 1;301(5):1123–1133. doi: 10.1006/jmbi.2000.4037. [DOI] [PubMed] [Google Scholar]
  3. Cinque G., Croce R., Bassi R. Absorption spectra of chlorophyll a and b in Lhcb protein environment. Photosynth Res. 2000;64(2-3):233–242. doi: 10.1023/A:1006467617697. [DOI] [PubMed] [Google Scholar]
  4. Cometta A., Zucchelli G., Karapetyan N. V., Engelmann E., Garlaschi F. M., Jennings R. C. Thermal behavior of long wavelength absorption transitions in Spirulina platensis photosystem I trimers. Biophys J. 2000 Dec;79(6):3235–3243. doi: 10.1016/S0006-3495(00)76556-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Croce R., Zucchelli G., Garlaschi F. M., Jennings R. C. A thermal broadening study of the antenna chlorophylls in PSI-200, LHCI, and PSI core. Biochemistry. 1998 Dec 15;37(50):17355–17360. doi: 10.1021/bi9813227. [DOI] [PubMed] [Google Scholar]
  6. Di Pace A., Cupane A., Leone M., Vitrano E., Cordone L. Protein dynamics. Vibrational coupling, spectral broadening mechanisms, and anharmonicity effects in carbonmonoxy heme proteins studied by the temperature dependence of the Soret band lineshape. Biophys J. 1992 Aug;63(2):475–484. doi: 10.1016/S0006-3495(92)81606-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. French C. S., Brown J. S., Lawrence M. C. Four universal forms of chlorophyll a. Plant Physiol. 1972 Mar;49(3):421–429. doi: 10.1104/pp.49.3.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Giuffra E., Zucchelli G., Sandonà D., Croce R., Cugini D., Garlaschi F. M., Bassi R., Jennings R. C. Analysis of some optical properties of a native and reconstituted photosystem II antenna complex, CP29: pigment binding sites can be occupied by chlorophyll a or chlorophyll b and determine spectral forms. Biochemistry. 1997 Oct 21;36(42):12984–12993. doi: 10.1021/bi9711339. [DOI] [PubMed] [Google Scholar]
  9. Green B. R., Durnford D. G. THE CHLOROPHYLL-CAROTENOID PROTEINS OF OXYGENIC PHOTOSYNTHESIS. Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47(NaN):685–714. doi: 10.1146/annurev.arplant.47.1.685. [DOI] [PubMed] [Google Scholar]
  10. Hankamer Ben, Barber James, Boekema Egbert J. STRUCTURE AND MEMBRANE ORGANIZATION OF PHOTOSYSTEM II IN GREEN PLANTS. Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48(NaN):641–671. doi: 10.1146/annurev.arplant.48.1.641. [DOI] [PubMed] [Google Scholar]
  11. He Q., Schlich T., Paulsen H., Vermaas W. Expression of a higher plant light-harvesting chlorophyll a/b-binding protein in Synechocystis sp. PCC 6803. Eur J Biochem. 1999 Jul;263(2):561–570. doi: 10.1046/j.1432-1327.1999.00526.x. [DOI] [PubMed] [Google Scholar]
  12. Jennings R. C., Bassi R., Garlaschi F. M., Dainese P., Zucchelli G. Distribution of the chlorophyll spectral forms in the chlorophyll-protein complexes of photosystem II antenna. Biochemistry. 1993 Apr 6;32(13):3203–3210. doi: 10.1021/bi00064a002. [DOI] [PubMed] [Google Scholar]
  13. Jia Y., Jean J. M., Werst M. M., Chan C. K., Fleming G. R. Simulations of the temperature dependence of energy transfer in the PSI core antenna. Biophys J. 1992 Jul;63(1):259–273. doi: 10.1016/S0006-3495(92)81589-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jordan P., Fromme P., Witt H. T., Klukas O., Saenger W., Krauss N. Three-dimensional structure of cyanobacterial photosystem I at 2.5 A resolution. Nature. 2001 Jun 21;411(6840):909–917. doi: 10.1038/35082000. [DOI] [PubMed] [Google Scholar]
  15. Kleima F. J., Hobe S., Calkoen F., Urbanus M. L., Peterman E. J., van Grondelle R., Paulsen H., van Amerongen H. Decreasing the chlorophyll a/b ratio in reconstituted LHCII: structural and functional consequences. Biochemistry. 1999 May 18;38(20):6587–6596. doi: 10.1021/bi982823v. [DOI] [PubMed] [Google Scholar]
  16. Kochubey S. M., Samokhval E. G. Long-wavelength chlorophyll forms in Photosystem I from pea thylakoids. Photosynth Res. 2000;63(3):281–290. doi: 10.1023/A:1006482618292. [DOI] [PubMed] [Google Scholar]
  17. Lutz M. Antenna chlorophyll in photosynthetic membranes. A study by resonance Raman spectroscopy. Biochim Biophys Acta. 1977 Jun 9;460(3):408–430. doi: 10.1016/0005-2728(77)90081-0. [DOI] [PubMed] [Google Scholar]
  18. Lutz M., Breton J. Chlorophyll associations in the chloroplast: resonance Raman spectroscopy. Biochem Biophys Res Commun. 1973 Jul 17;53(2):413–418. doi: 10.1016/0006-291x(73)90677-3. [DOI] [PubMed] [Google Scholar]
  19. Matthews B. W., Fenna R. E., Bolognesi M. C., Schmid M. F., Olson J. M. Structure of a bacteriochlorophyll a-protein from the green photosynthetic bacterium Prosthecochloris aestuarii. J Mol Biol. 1979 Jun 25;131(2):259–285. doi: 10.1016/0022-2836(79)90076-7. [DOI] [PubMed] [Google Scholar]
  20. Nishigaki A., Ohshima S., Nakayama K., Okada M., Nagashima U. Application of molecular orbital calculations to interpret the chlorophyll spectral forms in pea photosystem II. Photochem Photobiol. 2001 Mar;73(3):245–248. doi: 10.1562/0031-8655(2001)073<0245:aomoct>2.0.co;2. [DOI] [PubMed] [Google Scholar]
  21. Pieper J., Irrgang K. D., Rätsep M., Voigt J., Renger G., Small G. J. Assignment of the lowest Qy-state and spectral dynamics of the CP29 chlorophyll a/b antenna complex of green plants: a hole-burning study. Photochem Photobiol. 2000 May;71(5):574–581. doi: 10.1562/0031-8655(2000)071<0574:aotlqy>2.0.co;2. [DOI] [PubMed] [Google Scholar]
  22. Remelli R., Varotto C., Sandonà D., Croce R., Bassi R. Chlorophyll binding to monomeric light-harvesting complex. A mutation analysis of chromophore-binding residues. J Biol Chem. 1999 Nov 19;274(47):33510–33521. doi: 10.1074/jbc.274.47.33510. [DOI] [PubMed] [Google Scholar]
  23. Rogl H., Kühlbrandt W. Mutant trimers of light-harvesting complex II exhibit altered pigment content and spectroscopic features. Biochemistry. 1999 Dec 7;38(49):16214–16222. doi: 10.1021/bi990739p. [DOI] [PubMed] [Google Scholar]
  24. Shipman L. L., Cotton T. M., Norris J. R., Katz J. J. An analysis of the visible absorption spectrum of chlorophyll a monomer, dimer,and oligomers in solution. J Am Chem Soc. 1976 Dec 8;98(25):8222–8230. doi: 10.1021/ja00441a056. [DOI] [PubMed] [Google Scholar]
  25. Trinkunas G., Holzwarth A. R. Kinetic modeling of exciton migration in photosynthetic systems. 2. Simulations of excitation dynamics in two-dimensional photosystem I core antenna/reaction center complexes. Biophys J. 1994 Feb;66(2 Pt 1):415–429. doi: 10.1016/s0006-3495(94)80792-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Umetsu M, Wang ZY, Kobayashi M, Nozawa T. Interaction of photosynthetic pigments with various organic solvents. Magnetic circular dichroism approach and application to chlorosomes . Biochim Biophys Acta. 1999 Jan 27;1410(1):19–31. doi: 10.1016/s0005-2728(98)00170-4. [DOI] [PubMed] [Google Scholar]
  27. Yang C., Kosemund K., Cornet C., Paulsen H. Exchange of pigment-binding amino acids in light-harvesting chlorophyll a/b protein. Biochemistry. 1999 Dec 7;38(49):16205–16213. doi: 10.1021/bi990738x. [DOI] [PubMed] [Google Scholar]
  28. Zucchelli G., Dainese P., Jennings R. C., Breton J., Garlaschi F. M., Bassi R. Gaussian decomposition of absorption and linear dichroism spectra of outer antenna complexes of photosystem II. Biochemistry. 1994 Aug 2;33(30):8982–8990. doi: 10.1021/bi00196a016. [DOI] [PubMed] [Google Scholar]
  29. Zucchelli G., Garlaschi F. M., Jennings R. C. Thermal broadening analysis of the light harvesting complex II absorption spectrum. Biochemistry. 1996 Dec 17;35(50):16247–16254. doi: 10.1021/bi9613178. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES