Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Jan;82(1 Pt 1):464–473. doi: 10.1016/S0006-3495(02)75411-8

Dynamics of antifreeze glycoproteins in the presence of ice.

Nelly M Tsvetkova 1, Brian L Phillips 1, Viswanathan V Krishnan 1, Robert E Feeney 1, William H Fink 1, John H Crowe 1, Subhash H Risbud 1, Fern Tablin 1, Yin Yeh 1
PMCID: PMC1302486  PMID: 11751333

Abstract

Antifreeze glycoproteins from the Greenland cod Boreogadus saida were dimethylated at the N-terminus (m*AFGP) and their dynamics and conformational properties were studied in the presence of ice using (13)C-NMR and FTIR spectroscopy. (13)C-NMR experiments of m*AFGP in D(2)O, in H(2)O, and of freeze-dried m*AFGP were performed as a function of temperature. Dynamic parameters ((1)H T(1 rho) and T(CH)) obtained by varying the contact time revealed notable differences in the motional properties of AFGP between the different states. AFGP/ice dynamics was dominated by fast-scale motions (nanosecond to picosecond time scale), suggesting that the relaxation is markedly affected by the protein hydration. The data suggest that AFGP adopts a similar type of three-dimensional fold both in the presence of ice and in the freeze-dried state. FTIR studies of the amide I band did not show a single prevailing secondary structure in the frozen state. The high number of conformers suggests a high flexibility, and possibly reflects the necessity to expose more ice-binding groups. The data suggest that the effect of hydration on the local mobility of AFGP and the lack of significant change in the backbone conformation in the frozen state may play a role in inhibiting the ice crystal growth.

Full Text

The Full Text of this article is available as a PDF (213.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ansari A., Berendzen J., Bowne S. F., Frauenfelder H., Iben I. E., Sauke T. B., Shyamsunder E., Young R. D. Protein states and proteinquakes. Proc Natl Acad Sci U S A. 1985 Aug;82(15):5000–5004. doi: 10.1073/pnas.82.15.5000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bandekar J. Amide modes and protein conformation. Biochim Biophys Acta. 1992 Apr 8;1120(2):123–143. doi: 10.1016/0167-4838(92)90261-b. [DOI] [PubMed] [Google Scholar]
  3. Berman E., Allerhand A., DeVries A. L. Natural abundance carbon 13 nuclear magnetic resonance spectroscopy of antifreeze glycoproteins. J Biol Chem. 1980 May 25;255(10):4407–4410. [PubMed] [Google Scholar]
  4. Bush C. A., Feeney R. E. Conformation of the glycotripeptide repeating unit of antifreeze glycoprotein of polar fish as determined from the fully assigned proton n.m.r. spectrum. Int J Pept Protein Res. 1986 Oct;28(4):386–397. doi: 10.1111/j.1399-3011.1986.tb03270.x. [DOI] [PubMed] [Google Scholar]
  5. Bush C. A., Ralapati S., Matson G. M., Yamasaki R. B., Osuga D. T., Yeh Y., Feeney R. E. Conformation of the antifreeze glycoprotein of polar fish. Arch Biochem Biophys. 1984 Aug 1;232(2):624–631. doi: 10.1016/0003-9861(84)90582-4. [DOI] [PubMed] [Google Scholar]
  6. Byler D. M., Susi H. Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers. 1986 Mar;25(3):469–487. doi: 10.1002/bip.360250307. [DOI] [PubMed] [Google Scholar]
  7. Chirgadze Y. N., Fedorov O. V., Trushina N. P. Estimation of amino acid residue side-chain absorption in the infrared spectra of protein solutions in heavy water. Biopolymers. 1975 Apr;14(4):679–694. doi: 10.1002/bip.1975.360140402. [DOI] [PubMed] [Google Scholar]
  8. Davies P. L., Hew C. L. Biochemistry of fish antifreeze proteins. FASEB J. 1990 May;4(8):2460–2468. doi: 10.1096/fasebj.4.8.2185972. [DOI] [PubMed] [Google Scholar]
  9. DeVries A. L. Antifreeze glycopeptides and peptides: interactions with ice and water. Methods Enzymol. 1986;127:293–303. doi: 10.1016/0076-6879(86)27024-x. [DOI] [PubMed] [Google Scholar]
  10. DeVries A. L., Komatsu S. K., Feeney R. E. Chemical and physical properties of freezing point-depressing glycoproteins from Antarctic fishes. J Biol Chem. 1970 Jun 10;245(11):2901–2908. [PubMed] [Google Scholar]
  11. Dong A., Huang P., Caughey W. S. Protein secondary structures in water from second-derivative amide I infrared spectra. Biochemistry. 1990 Apr 3;29(13):3303–3308. doi: 10.1021/bi00465a022. [DOI] [PubMed] [Google Scholar]
  12. Doucet C. J., Byass L., Elias L., Worrall D., Smallwood M., Bowles D. J. Distribution and characterization of recrystallization inhibitor activity in plant and lichen species from the UK and maritime Antarctic. Cryobiology. 2000 May;40(3):218–227. doi: 10.1006/cryo.2000.2241. [DOI] [PubMed] [Google Scholar]
  13. Drewes J. A., Rowlen K. L. Evidence for a gamma-turn motif in antifreeze glycopeptides. Biophys J. 1993 Sep;65(3):985–991. doi: 10.1016/S0006-3495(93)81167-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Duman J. G. Antifreeze and ice nucleator proteins in terrestrial arthropods. Annu Rev Physiol. 2001;63:327–357. doi: 10.1146/annurev.physiol.63.1.327. [DOI] [PubMed] [Google Scholar]
  15. Duman J. G., Li N., Verleye D., Goetz F. W., Wu D. W., Andorfer C. A., Benjamin T., Parmelee D. C. Molecular characterization and sequencing of antifreeze proteins from larvae of the beetle Dendroides canadensis. J Comp Physiol B. 1998 Apr;168(3):225–232. doi: 10.1007/s003600050140. [DOI] [PubMed] [Google Scholar]
  16. Ewart K. V., Lin Q., Hew C. L. Structure, function and evolution of antifreeze proteins. Cell Mol Life Sci. 1999 Feb;55(2):271–283. doi: 10.1007/s000180050289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Feeney R. E., Burcham T. S., Yeh Y. Antifreeze glycoproteins from polar fish blood. Annu Rev Biophys Biophys Chem. 1986;15:59–78. doi: 10.1146/annurev.bb.15.060186.000423. [DOI] [PubMed] [Google Scholar]
  18. Feeney R. E., Yeh Y. Antifreeze proteins from fish bloods. Adv Protein Chem. 1978;32:191–282. doi: 10.1016/s0065-3233(08)60576-8. [DOI] [PubMed] [Google Scholar]
  19. Filira F., Biondi L., Scolaro B., Foffani M. T., Mammi S., Peggion E., Rocchi R. Solid phase synthesis and conformation of sequential glycosylated polytripeptide sequences related to antifreeze glycoproteins. Int J Biol Macromol. 1990 Feb;12(1):41–49. doi: 10.1016/0141-8130(90)90080-t. [DOI] [PubMed] [Google Scholar]
  20. Geoghegan K. F., Osuga D. T., Ahmed A. I., Yeh Y., Feeney R. E. Antifreeze glycoproteins from Polar fish. Structural requirements for function of glycopeptide 8. J Biol Chem. 1980 Jan 25;255(2):663–667. [PubMed] [Google Scholar]
  21. Graether S. P., Kuiper M. J., Gagné S. M., Walker V. K., Jia Z., Sykes B. D., Davies P. L. Beta-helix structure and ice-binding properties of a hyperactive antifreeze protein from an insect. Nature. 2000 Jul 20;406(6793):325–328. doi: 10.1038/35018610. [DOI] [PubMed] [Google Scholar]
  22. Harding M. M., Ward L. G., Haymet A. D. Type I 'antifreeze' proteins. Structure-activity studies and mechanisms of ice growth inhibition. Eur J Biochem. 1999 Sep;264(3):653–665. doi: 10.1046/j.1432-1327.1999.00617.x. [DOI] [PubMed] [Google Scholar]
  23. Knight C. A., Cheng C. C., DeVries A. L. Adsorption of alpha-helical antifreeze peptides on specific ice crystal surface planes. Biophys J. 1991 Feb;59(2):409–418. doi: 10.1016/S0006-3495(91)82234-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Knight C. A., Driggers E., DeVries A. L. Adsorption to ice of fish antifreeze glycopeptides 7 and 8. Biophys J. 1993 Jan;64(1):252–259. doi: 10.1016/S0006-3495(93)81361-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Komatsu S., DeVries A. L., Feeney R. E. Studies of the structure of freezing point-depressing glycoproteins from an Antarctic fish. J Biol Chem. 1970 Jun 10;245(11):2909–2913. [PubMed] [Google Scholar]
  26. Lane A. N., Hays L. M., Feeney R. E., Crowe L. M., Crowe J. H. Conformational and dynamic properties of a 14 residue antifreeze glycopeptide from Antarctic cod. Protein Sci. 1998 Jul;7(7):1555–1563. doi: 10.1002/pro.5560070709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lane A. N., Hays L. M., Tsvetkova N., Feeney R. E., Crowe L. M., Crowe J. H. Comparison of the solution conformation and dynamics of antifreeze glycoproteins from Antarctic fish. Biophys J. 2000 Jun;78(6):3195–3207. doi: 10.1016/S0006-3495(00)76856-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Liou Y. C., Tocilj A., Davies P. L., Jia Z. Mimicry of ice structure by surface hydroxyls and water of a beta-helix antifreeze protein. Nature. 2000 Jul 20;406(6793):322–324. doi: 10.1038/35018604. [DOI] [PubMed] [Google Scholar]
  29. Means G. E., Feeney R. E. Reductive alkylation of proteins. Anal Biochem. 1995 Jan 1;224(1):1–16. doi: 10.1006/abio.1995.1001. [DOI] [PubMed] [Google Scholar]
  30. Osuga D. T., Feeney R. E. Antifreeze glycoproteins from Arctic fish. J Biol Chem. 1978 Aug 10;253(15):5338–5343. [PubMed] [Google Scholar]
  31. Prestrelski S. J., Byler D. M., Liebman M. N. Comparison of various molecular forms of bovine trypsin: correlation of infrared spectra with X-ray crystal structures. Biochemistry. 1991 Jan 8;30(1):133–143. doi: 10.1021/bi00215a020. [DOI] [PubMed] [Google Scholar]
  32. Rao B. N., Bush C. A. Comparison by 1H-nmr spectroscopy of the conformation of the 2600 dalton antifreeze glycopeptide of polar cod with that of the high molecular weight antifreeze glycoprotein. Biopolymers. 1987 Aug;26(8):1227–1244. doi: 10.1002/bip.360260803. [DOI] [PubMed] [Google Scholar]
  33. Raymond J. A., DeVries A. L. Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2589–2593. doi: 10.1073/pnas.74.6.2589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Raymond J. A., Wilson P., DeVries A. L. Inhibition of growth of nonbasal planes in ice by fish antifreezes. Proc Natl Acad Sci U S A. 1989 Feb;86(3):881–885. doi: 10.1073/pnas.86.3.881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sidebottom C., Buckley S., Pudney P., Twigg S., Jarman C., Holt C., Telford J., McArthur A., Worrall D., Hubbard R. Heat-stable antifreeze protein from grass. Nature. 2000 Jul 20;406(6793):256–256. doi: 10.1038/35018639. [DOI] [PubMed] [Google Scholar]
  36. Surewicz W. K., Mantsch H. H., Chapman D. Determination of protein secondary structure by Fourier transform infrared spectroscopy: a critical assessment. Biochemistry. 1993 Jan 19;32(2):389–394. doi: 10.1021/bi00053a001. [DOI] [PubMed] [Google Scholar]
  37. Surewicz W. K., Mantsch H. H. New insight into protein secondary structure from resolution-enhanced infrared spectra. Biochim Biophys Acta. 1988 Jan 29;952(2):115–130. doi: 10.1016/0167-4838(88)90107-0. [DOI] [PubMed] [Google Scholar]
  38. Sönnichsen F. D., Davies P. L., Sykes B. D. NMR structural studies on antifreeze proteins. Biochem Cell Biol. 1998;76(2-3):284–293. doi: 10.1139/bcb-76-2-3-284. [DOI] [PubMed] [Google Scholar]
  39. Tomimatsu Y., Scherer J. R., Yeh Y., Feeney R. E. Raman spectra of a solid antifreeze glycoprotein and its liquid and frozen aqueous solutions. J Biol Chem. 1976 Apr 25;251(8):2290–2298. [PubMed] [Google Scholar]
  40. Udenfriend S., Stein S., Böhlen P., Dairman W., Leimgruber W., Weigele M. Fluorescamine: a reagent for assay of amino acids, peptides, proteins, and primary amines in the picomole range. Science. 1972 Nov 24;178(4063):871–872. doi: 10.1126/science.178.4063.871. [DOI] [PubMed] [Google Scholar]
  41. Wen D., Laursen R. A. A model for binding of an antifreeze polypeptide to ice. Biophys J. 1992 Dec;63(6):1659–1662. doi: 10.1016/S0006-3495(92)81750-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wilson P. W., Beaglehole D., Devries A. L. Antifreeze glycopeptide adsorption on single crystal ice surfaces using ellipsometry. Biophys J. 1993 Jun;64(6):1878–1884. doi: 10.1016/S0006-3495(93)81559-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Yeh Yin, Feeney Robert E. Antifreeze Proteins: Structures and Mechanisms of Function. Chem Rev. 1996 Mar 28;96(2):601–618. doi: 10.1021/cr950260c. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES