Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Jan;82(1 Pt 1):493–508. doi: 10.1016/S0006-3495(02)75414-3

Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues.

Paul J Campagnola 1, Andrew C Millard 1, Mark Terasaki 1, Pamela E Hoppe 1, Christian J Malone 1, William A Mohler 1
PMCID: PMC1302489  PMID: 11751336

Abstract

We find that several key endogenous protein structures give rise to intense second-harmonic generation (SHG)-nonabsorptive frequency doubling of an excitation laser line. Second-harmonic imaging microscopy (SHIM) on a laser-scanning system proves, therefore, to be a powerful and unique tool for high-resolution, high-contrast, three-dimensional studies of live cell and tissue architecture. Unlike fluorescence, SHG suffers no inherent photobleaching or toxicity and does not require exogenous labels. Unlike polarization microscopy, SHIM provides intrinsic confocality and deep sectioning in complex tissues. In this study, we demonstrate the clarity of SHIM optical sectioning within unfixed, unstained thick specimens. SHIM and two-photon excited fluorescence (TPEF) were combined in a dual-mode nonlinear microscopy to elucidate the molecular sources of SHG in live cells and tissues. SHG arose not only from coiled-coil complexes within connective tissues and muscle thick filaments, but also from microtubule arrays within interphase and mitotic cells. Both polarization dependence and a local symmetry cancellation effect of SHG allowed the signal from species generating the second harmonic to be decoded, by ratiometric correlation with TPEF, to yield information on local structure below optical resolution. The physical origin of SHG within these tissues is addressed and is attributed to the laser interaction with dipolar protein structures that is enhanced by the intrinsic chirality of the protein helices.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Axelrod D. Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization. Biophys J. 1979 Jun;26(3):557–573. doi: 10.1016/S0006-3495(79)85271-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ben-Oren I., Peleg G., Lewis A., Minke B., Loew L. Infrared nonlinear optical measurements of membrane potential in photoreceptor cells. Biophys J. 1996 Sep;71(3):1616–1620. doi: 10.1016/S0006-3495(96)79365-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Byers JD, Yee HI, Petralli-Mallow T, Hicks JM. Second-harmonic generation circular-dichroism spectroscopy from chiral monolayers. Phys Rev B Condens Matter. 1994 May 15;49(20):14643–14647. doi: 10.1103/physrevb.49.14643. [DOI] [PubMed] [Google Scholar]
  4. Campagnola P. J., Wei M. D., Lewis A., Loew L. M. High-resolution nonlinear optical imaging of live cells by second harmonic generation. Biophys J. 1999 Dec;77(6):3341–3349. doi: 10.1016/S0006-3495(99)77165-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cassimeris L., Inoué S., Salmon E. D. Microtubule dynamics in the chromosomal spindle fiber: analysis by fluorescence and high-resolution polarization microscopy. Cell Motil Cytoskeleton. 1988;10(1-2):185–196. doi: 10.1002/cm.970100123. [DOI] [PubMed] [Google Scholar]
  6. Denk W., Strickler J. H., Webb W. W. Two-photon laser scanning fluorescence microscopy. Science. 1990 Apr 6;248(4951):73–76. doi: 10.1126/science.2321027. [DOI] [PubMed] [Google Scholar]
  7. Eisenthal K. B. Liquid Interfaces Probed by Second-Harmonic and Sum-Frequency Spectroscopy. Chem Rev. 1996 Jun 20;96(4):1343–1360. doi: 10.1021/cr9502211. [DOI] [PubMed] [Google Scholar]
  8. Epstein H. F., Miller D. M., 3rd, Ortiz I., Berliner G. C. Myosin and paramyosin are organized about a newly identified core structure. J Cell Biol. 1985 Mar;100(3):904–915. doi: 10.1083/jcb.100.3.904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Euteneuer U., McIntosh J. R. Polarity of midbody and phragmoplast microtubules. J Cell Biol. 1980 Nov;87(2 Pt 1):509–515. doi: 10.1083/jcb.87.2.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Freund I., Deutsch M., Sprecher A. Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon. Biophys J. 1986 Oct;50(4):693–712. doi: 10.1016/S0006-3495(86)83510-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Guo Y., Savage H. E., Liu F., Schantz S. P., Ho P. P., Alfano R. R. Subsurface tumor progression investigated by noninvasive optical second harmonic tomography. Proc Natl Acad Sci U S A. 1999 Sep 14;96(19):10854–10856. doi: 10.1073/pnas.96.19.10854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Haimo L. T. Microtubule polarity in taxol-treated isolated spindles. Can J Biochem Cell Biol. 1985 Jun;63(6):519–532. doi: 10.1139/o85-071. [DOI] [PubMed] [Google Scholar]
  13. Hoppe P. E., Waterston R. H. Hydrophobicity variations along the surface of the coiled-coil rod may mediate striated muscle myosin assembly in Caenorhabditis elegans. J Cell Biol. 1996 Oct;135(2):371–382. doi: 10.1083/jcb.135.2.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hua XM, Gersten JI. Theory of second-harmonic generation by small metal spheres. Phys Rev B Condens Matter. 1986 Mar 15;33(6):3756–3764. doi: 10.1103/physrevb.33.3756. [DOI] [PubMed] [Google Scholar]
  15. Kim B. M., Eichler J., Reiser K. M., Rubenchik A. M., Da Silva L. B. Collagen structure and nonlinear susceptibility: effects of heat, glycation, and enzymatic cleavage on second harmonic signal intensity. Lasers Surg Med. 2000;27(4):329–335. doi: 10.1002/1096-9101(2000)27:4<329::aid-lsm5>3.0.co;2-c. [DOI] [PubMed] [Google Scholar]
  16. Mello C. C., Kramer J. M., Stinchcomb D., Ambros V. Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 1991 Dec;10(12):3959–3970. doi: 10.1002/j.1460-2075.1991.tb04966.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Miller D. M., 3rd, Ortiz I., Berliner G. C., Epstein H. F. Differential localization of two myosins within nematode thick filaments. Cell. 1983 Sep;34(2):477–490. doi: 10.1016/0092-8674(83)90381-1. [DOI] [PubMed] [Google Scholar]
  18. Moreaux L., Sandre O., Charpak S., Blanchard-Desce M., Mertz J. Coherent scattering in multi-harmonic light microscopy. Biophys J. 2001 Mar;80(3):1568–1574. doi: 10.1016/S0006-3495(01)76129-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Peleg G., Lewis A., Linial M., Loew L. M. Nonlinear optical measurement of membrane potential around single molecules at selected cellular sites. Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):6700–6704. doi: 10.1073/pnas.96.12.6700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Strome S., Powers J., Dunn M., Reese K., Malone C. J., White J., Seydoux G., Saxton W. Spindle dynamics and the role of gamma-tubulin in early Caenorhabditis elegans embryos. Mol Biol Cell. 2001 Jun;12(6):1751–1764. doi: 10.1091/mbc.12.6.1751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Verbiest T, Elshocht SV, Kauranen M, Hellemans L, Snauwaert J, Nuckolls C, Katz TJ, Persoons A. Strong enhancement of nonlinear optical properties through supramolecular chirality . Science. 1998 Oct 30;282(5390):913–915. doi: 10.1126/science.282.5390.913. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES