Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Jan;76(1 Pt 1):1–16. doi: 10.1016/S0006-3495(99)77173-0

Biomolecular electrostatics with the linearized Poisson-Boltzmann equation.

F Fogolari 1, P Zuccato 1, G Esposito 1, P Viglino 1
PMCID: PMC1302495  PMID: 9876118

Abstract

Electrostatics plays a key role in many biological processes. The Poisson-Boltzmann equation (PBE) and its linearized form (LPBE) allow prediction of electrostatic effects for biomolecular systems. The discrepancies between the solutions of the PBE and those of the LPBE are well known for systems with a simple geometry, but much less for biomolecular systems. Results for high charge density systems show that there are limitations to the applicability of the LPBE at low ionic strength and, to a lesser extent, at higher ionic strength. For systems with a simple geometry, the onset of nonlinear effects has been shown to be governed by the ratio of the electric field over the Debye screening constant. This ratio is used in the present work to correct the LPBE results to reproduce fairly accurately those obtained from the PBE for systems with a simple geometry. Since the correction does not involve any geometrical parameter, it can be easily applied to real biomolecular systems. The error on the potential for the LPBE (compared to the PBE) spans few kT/q for the systems studied here and is greatly reduced by the correction. This allows for a more accurate evaluation of the electrostatic free energy of the systems.

Full Text

The Full Text of this article is available as a PDF (363.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abagyan R., Totrov M. Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins. J Mol Biol. 1994 Jan 21;235(3):983–1002. doi: 10.1006/jmbi.1994.1052. [DOI] [PubMed] [Google Scholar]
  2. Antosiewicz J., McCammon J. A., Gilson M. K. Prediction of pH-dependent properties of proteins. J Mol Biol. 1994 May 6;238(3):415–436. doi: 10.1006/jmbi.1994.1301. [DOI] [PubMed] [Google Scholar]
  3. Baginski M., Fogolari F., Briggs J. M. Electrostatic and non-electrostatic contributions to the binding free energies of anthracycline antibiotics to DNA. J Mol Biol. 1997 Nov 28;274(2):253–267. doi: 10.1006/jmbi.1997.1399. [DOI] [PubMed] [Google Scholar]
  4. Billeter M., Qian Y. Q., Otting G., Müller M., Gehring W., Wüthrich K. Determination of the nuclear magnetic resonance solution structure of an Antennapedia homeodomain-DNA complex. J Mol Biol. 1993 Dec 20;234(4):1084–1093. doi: 10.1006/jmbi.1993.1661. [DOI] [PubMed] [Google Scholar]
  5. Brownlow S., Morais Cabral J. H., Cooper R., Flower D. R., Yewdall S. J., Polikarpov I., North A. C., Sawyer L. Bovine beta-lactoglobulin at 1.8 A resolution--still an enigmatic lipocalin. Structure. 1997 Apr 15;5(4):481–495. doi: 10.1016/s0969-2126(97)00205-0. [DOI] [PubMed] [Google Scholar]
  6. Davis M. E., Madura J. D., Sines J., Luty B. A., Allison S. A., McCammon J. A. Diffusion-controlled enzymatic reactions. Methods Enzymol. 1991;202:473–497. doi: 10.1016/0076-6879(91)02024-4. [DOI] [PubMed] [Google Scholar]
  7. Fogolari F., Elcock A. H., Esposito G., Viglino P., Briggs J. M., McCammon J. A. Electrostatic effects in homeodomain-DNA interactions. J Mol Biol. 1997 Mar 28;267(2):368–381. doi: 10.1006/jmbi.1996.0842. [DOI] [PubMed] [Google Scholar]
  8. Gilson M. K., Honig B. H. The dielectric constant of a folded protein. Biopolymers. 1986 Nov;25(11):2097–2119. doi: 10.1002/bip.360251106. [DOI] [PubMed] [Google Scholar]
  9. Gilson M. K., Straatsma T. P., McCammon J. A., Ripoll D. R., Faerman C. H., Axelsen P. H., Silman I., Sussman J. L. Open "back door" in a molecular dynamics simulation of acetylcholinesterase. Science. 1994 Mar 4;263(5151):1276–1278. doi: 10.1126/science.8122110. [DOI] [PubMed] [Google Scholar]
  10. Honig B., Nicholls A. Classical electrostatics in biology and chemistry. Science. 1995 May 26;268(5214):1144–1149. doi: 10.1126/science.7761829. [DOI] [PubMed] [Google Scholar]
  11. Jayaram B., Beyeridge D. L. Modeling DNA in aqueous solutions: theoretical and computer simulation studies on the ion atmosphere of DNA. Annu Rev Biophys Biomol Struct. 1996;25:367–394. doi: 10.1146/annurev.bb.25.060196.002055. [DOI] [PubMed] [Google Scholar]
  12. Misra V. K., Sharp K. A., Friedman R. A., Honig B. Salt effects on ligand-DNA binding. Minor groove binding antibiotics. J Mol Biol. 1994 Apr 29;238(2):245–263. doi: 10.1006/jmbi.1994.1285. [DOI] [PubMed] [Google Scholar]
  13. Ragona L., Pusterla F., Zetta L., Monaco H. L., Molinari H. Identification of a conserved hydrophobic cluster in partially folded bovine beta-lactoglobulin at pH 2. Fold Des. 1997;2(5):281–290. doi: 10.1016/s1359-0278(97)00039-4. [DOI] [PubMed] [Google Scholar]
  14. Sharp K., Fine R., Honig B. Computer simulations of the diffusion of a substrate to an active site of an enzyme. Science. 1987 Jun 12;236(4807):1460–1463. doi: 10.1126/science.3589666. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES