Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Jan;76(1 Pt 1):88–97. doi: 10.1016/S0006-3495(99)77180-8

Cysteines beta93 and beta112 as probes of conformational and functional events at the human hemoglobin subunit interfaces.

G B Vásquez 1, M Karavitis 1, X Ji 1, I Pechik 1, W S Brinigar 1, G L Gilliland 1, C Fronticelli 1
PMCID: PMC1302502  PMID: 9876125

Abstract

Three variants of tetrameric human hemoglobin, with changes at the alpha1beta2/alpha2beta1-interface, at the alpha1beta1/alpha2beta2-interface, and at both interfaces, have been constructed. At alpha1beta2/alpha2beta1-interface the beta93 cysteine was replaced by alanine (betaC93A), and at the alpha1beta1/alpha2beta2-interface the beta112 cysteine was replaced by glycine (betaC112G). The alpha1beta2 interface variant, betaC93A, and the alpha1beta1/alpha1beta2 double mutant, beta(C93A+C112G), were crystallized in the T-state, and the structures determined at 2. 0 and 1.8 A resolution, respectively. A comparison of the structures with that of natural hemoglobin A shows the absence of detectable changes in the tertiary folding of the protein or in the T-state quaternary assembly. At the beta112 site, the void left by the removal of the cysteine side chain is filled by a water molecule, and the functional characteristics of betaC112G are essentially those of human hemoglobin A. At the beta93 site, water molecules do not replace the cysteine side chain, and the alanine substitution increases the conformational freedom of beta146His, weakening the important interaction of this residue with beta94Asp. As a result, when Cl- is present in the solution, at a concentration 100 mM, the Bohr effect of the two mutants carrying the beta93Cys-->Ala substitution, betaC93A and beta(C93A+C112G), is significantly modified being practically absent below pH 7.4. Based on the crystallographic data, we attribute these effects to the competition between beta94Asp and Cl- in the salt link with beta146His in T-state hemoglobin. These results point to an interplay between the betaHis146-betaAsp94 salt bridge and the Cl- in solution regulated by the Cys present at position beta93, indicating yet another role of beta93 Cys in the regulation of hemoglobin function.

Full Text

The Full Text of this article is available as a PDF (663.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ackers G. K., Doyle M. L., Myers D., Daugherty M. A. Molecular code for cooperativity in hemoglobin. Science. 1992 Jan 3;255(5040):54–63. doi: 10.1126/science.1553532. [DOI] [PubMed] [Google Scholar]
  2. Baldwin J. M. The structure of human carbonmonoxy haemoglobin at 2.7 A resolution. J Mol Biol. 1980 Jan 15;136(2):103–128. doi: 10.1016/0022-2836(80)90308-3. [DOI] [PubMed] [Google Scholar]
  3. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  4. Brünger A. T., Krukowski A., Erickson J. W. Slow-cooling protocols for crystallographic refinement by simulated annealing. Acta Crystallogr A. 1990 Jul 1;46(Pt 7):585–593. doi: 10.1107/s0108767390002355. [DOI] [PubMed] [Google Scholar]
  5. Chiancone E., Norne J. E., Forsén S., Bonaventura J., Brunori M., Antonini E., Wyman J. Identification of chloride-binding sites in hemoglobin by nuclear-magnetic-resonance quadrupole-relaxation studies of hemoglobin digests. Eur J Biochem. 1975 Jul 1;55(2):385–390. doi: 10.1111/j.1432-1033.1975.tb02173.x. [DOI] [PubMed] [Google Scholar]
  6. Di Cera E., Gill S. J., Wyman J. Binding capacity: cooperativity and buffering in biopolymers. Proc Natl Acad Sci U S A. 1988 Jan;85(2):449–452. doi: 10.1073/pnas.85.2.449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dolman D., Gill S. J. Membrane-covered thin-layer optical cell for gas-reaction studies of hemoglobin. Anal Biochem. 1978 Jun 15;87(1):127–134. doi: 10.1016/0003-2697(78)90576-6. [DOI] [PubMed] [Google Scholar]
  8. Fronticelli C., Gattoni M., Lu A. L., Brinigar W. S., Bucci J. L., Chiancone E. The dimer-tetramer equilibrium of recombinant hemoglobins. Stabilization of the alpha 1 beta 2 interface by the mutation beta(Cys112-->Gly) at the alpha 1 beta 1 interface. Biophys Chem. 1994 Jul;51(1):53–57. doi: 10.1016/0301-4622(94)00028-x. [DOI] [PubMed] [Google Scholar]
  9. Fronticelli C., O'Donnell J. K., Brinigar W. S. Recombinant human hemoglobin: expression and refolding of beta-globin from Escherichia coli. J Protein Chem. 1991 Oct;10(5):495–501. doi: 10.1007/BF01025477. [DOI] [PubMed] [Google Scholar]
  10. Fronticelli C., Pechik I., Brinigar W. S., Kowalczyk J., Gilliland G. L. Chloride ion independence of the Bohr effect in a mutant human hemoglobin beta (V1M+H2deleted). J Biol Chem. 1994 Sep 30;269(39):23965–23969. [PubMed] [Google Scholar]
  11. Hernan R. A., Sligar S. G. Tetrameric hemoglobin expressed in Escherichia coli. Evidence of heterogeneous subunit assembly. J Biol Chem. 1995 Nov 3;270(44):26257–26264. doi: 10.1074/jbc.270.44.26257. [DOI] [PubMed] [Google Scholar]
  12. Jia L., Bonaventura C., Bonaventura J., Stamler J. S. S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control. Nature. 1996 Mar 21;380(6571):221–226. doi: 10.1038/380221a0. [DOI] [PubMed] [Google Scholar]
  13. Kilmartin J. V., Breen J. J., Roberts G. C., Ho C. Direct measurement of the pK values of an alkaline Bohr group in human hemoglobin. Proc Natl Acad Sci U S A. 1973 Apr;70(4):1246–1249. doi: 10.1073/pnas.70.4.1246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kilmartin J. V., Fogg J. H., Perutz M. F. Role of C-terminal histidine in the alkaline Bohr effect of human hemoglobin. Biochemistry. 1980 Jul 8;19(14):3189–3183. doi: 10.1021/bi00555a013. [DOI] [PubMed] [Google Scholar]
  15. Louie G., Tran T., Englander J. J., Englander S. W. Allosteric energy at the hemoglobin beta chain C terminus studied by hydrogen exchange. J Mol Biol. 1988 Jun 20;201(4):755–764. doi: 10.1016/0022-2836(88)90472-x. [DOI] [PubMed] [Google Scholar]
  16. Luisi B. F., Nagai K. Crystallographic analysis of mutant human haemoglobins made in Escherichia coli. Nature. 1986 Apr 10;320(6062):555–556. doi: 10.1038/320555a0. [DOI] [PubMed] [Google Scholar]
  17. Martin de Llano J. J., Schneewind O., Stetler G., Manning J. M. Recombinant human sickle hemoglobin expressed in yeast. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):918–922. doi: 10.1073/pnas.90.3.918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nagai K., Perutz M. F., Poyart C. Oxygen binding properties of human mutant hemoglobins synthesized in Escherichia coli. Proc Natl Acad Sci U S A. 1985 Nov;82(21):7252–7255. doi: 10.1073/pnas.82.21.7252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Perutz M. F., Kilmartin J. V., Nishikura K., Fogg J. H., Butler P. J., Rollema H. S. Identification of residues contributing to the Bohr effect of human haemoglobin. J Mol Biol. 1980 Apr 15;138(3):649–668. doi: 10.1016/s0022-2836(80)80022-2. [DOI] [PubMed] [Google Scholar]
  20. Perutz M. F. Mechanisms of cooperativity and allosteric regulation in proteins. Q Rev Biophys. 1989 May;22(2):139–237. doi: 10.1017/s0033583500003826. [DOI] [PubMed] [Google Scholar]
  21. RIGGS A. The binding of N-ethylmaleimide by human hemoglobin and its effect upon the oxygen equilibrium. J Biol Chem. 1961 Jul;236:1948–1954. [PubMed] [Google Scholar]
  22. Sanna M. T., Razynska A., Karavitis M., Koley A. P., Friedman F. K., Russu I. M., Brinigar W. S., Fronticelli C. Assembly of human hemoglobin. Studies with Escherichia coli-expressed alpha-globin. J Biol Chem. 1997 Feb 7;272(6):3478–3486. doi: 10.1074/jbc.272.6.3478. [DOI] [PubMed] [Google Scholar]
  23. Shaanan B. Structure of human oxyhaemoglobin at 2.1 A resolution. J Mol Biol. 1983 Nov 25;171(1):31–59. doi: 10.1016/s0022-2836(83)80313-1. [DOI] [PubMed] [Google Scholar]
  24. Shen T. J., Ho N. T., Simplaceanu V., Zou M., Green B. N., Tam M. F., Ho C. Production of unmodified human adult hemoglobin in Escherichia coli. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):8108–8112. doi: 10.1073/pnas.90.17.8108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Silva M. M., Rogers P. H., Arnone A. A third quaternary structure of human hemoglobin A at 1.7-A resolution. J Biol Chem. 1992 Aug 25;267(24):17248–17256. [PubMed] [Google Scholar]
  26. Vásquez G. B., Ji X., Fronticelli C., Gilliland G. L. Human carboxyhemoglobin at 2.2 A resolution: structure and solvent comparisons of R-state, R2-state and T-state hemoglobins. Acta Crystallogr D Biol Crystallogr. 1998 May 1;54(Pt 3):355–366. doi: 10.1107/s0907444997012250. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES