Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Jan;76(1 Pt 1):103–109. doi: 10.1016/S0006-3495(99)77182-1

Detection of single mammalian cells by high-resolution magnetic resonance imaging.

S J Dodd 1, M Williams 1, J P Suhan 1, D S Williams 1, A P Koretsky 1, C Ho 1
PMCID: PMC1302504  PMID: 9876127

Abstract

This study reports the detection of single mammalian cells, specifically T cells (T lymphocytes) labeled with dextran-coated superparamagnetic iron oxide particles, using magnetic resonance microscopy. Size amplification due to sequestration of the superparamagnetic particles in vacuoles enhances contrast in localized areas in high-resolution magnetic resonance imaging. Magnetic resonance images of samples containing differing concentrations of T cells embedded in 3% gelatin show a number of dark regions due to the superparamagnetic iron oxide particles, consistent with the number predicted by transmission electron microscopy. Colabeling of T cell samples with a fluorescent dye leads to strong correlations between magnetic resonance and fluorescence microscopic images, showing the presence of the superparamagnetic iron oxide particles at the cell site. This result lays the foundation for our approach to tracking the movement of a specific cell type in live animals and humans.

Full Text

The Full Text of this article is available as a PDF (263.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bulte J. W., Hoekstra Y., Kamman R. L., Magin R. L., Webb A. G., Briggs R. W., Go K. G., Hulstaert C. E., Miltenyi S., The T. H. Specific MR imaging of human lymphocytes by monoclonal antibody-guided dextran-magnetite particles. Magn Reson Med. 1992 May;25(1):148–157. doi: 10.1002/mrm.1910250115. [DOI] [PubMed] [Google Scholar]
  2. Hardy P., Henkelman R. M. On the transverse relaxation rate enhancement induced by diffusion of spins through inhomogeneous fields. Magn Reson Med. 1991 Feb;17(2):348–356. doi: 10.1002/mrm.1910170207. [DOI] [PubMed] [Google Scholar]
  3. Litvin D. A., Rosenstreich D. L. Separation of lymphoid cells on nylon wool columns. Methods Enzymol. 1984;108:298–302. doi: 10.1016/s0076-6879(84)08095-2. [DOI] [PubMed] [Google Scholar]
  4. Molday R. S., MacKenzie D. Immunospecific ferromagnetic iron-dextran reagents for the labeling and magnetic separation of cells. J Immunol Methods. 1982 Aug 13;52(3):353–367. doi: 10.1016/0022-1759(82)90007-2. [DOI] [PubMed] [Google Scholar]
  5. Picker L. J., Butcher E. C. Physiological and molecular mechanisms of lymphocyte homing. Annu Rev Immunol. 1992;10:561–591. doi: 10.1146/annurev.iy.10.040192.003021. [DOI] [PubMed] [Google Scholar]
  6. Schoepf U., Marecos E. M., Melder R. J., Jain R. K., Weissleder R. Intracellular magnetic labeling of lymphocytes for in vivo trafficking studies. Biotechniques. 1998 Apr;24(4):642-6, 648-51. doi: 10.2144/98244rr01. [DOI] [PubMed] [Google Scholar]
  7. Weissleder R., Cheng H. C., Bogdanova A., Bogdanov A., Jr Magnetically labeled cells can be detected by MR imaging. J Magn Reson Imaging. 1997 Jan-Feb;7(1):258–263. doi: 10.1002/jmri.1880070140. [DOI] [PubMed] [Google Scholar]
  8. Weissleder R., Lee A. S., Khaw B. A., Shen T., Brady T. J. Antimyosin-labeled monocrystalline iron oxide allows detection of myocardial infarct: MR antibody imaging. Radiology. 1992 Feb;182(2):381–385. doi: 10.1148/radiology.182.2.1732953. [DOI] [PubMed] [Google Scholar]
  9. Yeh T. C., Zhang W., Ildstad S. T., Ho C. In vivo dynamic MRI tracking of rat T-cells labeled with superparamagnetic iron-oxide particles. Magn Reson Med. 1995 Feb;33(2):200–208. doi: 10.1002/mrm.1910330209. [DOI] [PubMed] [Google Scholar]
  10. Yeh T. C., Zhang W., Ildstad S. T., Ho C. Intracellular labeling of T-cells with superparamagnetic contrast agents. Magn Reson Med. 1993 Nov;30(5):617–625. doi: 10.1002/mrm.1910300513. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES