Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Jan;76(1 Pt 1):188–197. doi: 10.1016/S0006-3495(99)77188-2

Unbinding of retinoic acid from its receptor studied by steered molecular dynamics.

D Kosztin 1, S Izrailev 1, K Schulten 1
PMCID: PMC1302510  PMID: 9876133

Abstract

Retinoic acid receptor (RAR) is a ligand-dependent transcription factor that regulates the expression of genes involved in cell growth, differentiation, and development. Binding of the retinoic acid hormone to RAR is accompanied by conformational changes in the protein which induce transactivation or transrepression of the target genes. In this paper we present a study of the hormone binding/unbinding process in order to clarify the role of some of the amino acid contacts and identify possible pathways of the all-trans retinoic acid binding/unbinding to/from human retinoic acid receptor (hRAR)-gamma. Three possible pathways were explored using steered molecular dynamics simulations. Unbinding was induced on a time scale of 1 ns by applying external forces to the hormone. The simulations suggest that the hormone may employ one pathway for binding and an alternative "back door" pathway for unbinding.

Full Text

The Full Text of this article is available as a PDF (349.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson M. L., Nordström K., Demczuk S., Harbers M., Vennström B. Thyroid hormone alters the DNA binding properties of chicken thyroid hormone receptors alpha and beta. Nucleic Acids Res. 1992 Sep 25;20(18):4803–4810. doi: 10.1093/nar/20.18.4803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Balsera M., Stepaniants S., Izrailev S., Oono Y., Schulten K. Reconstructing potential energy functions from simulated force-induced unbinding processes. Biophys J. 1997 Sep;73(3):1281–1287. doi: 10.1016/S0006-3495(97)78161-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  4. Bishop T. C., Kosztin D., Schulten K. How hormone receptor-DNA binding affects nucleosomal DNA: the role of symmetry. Biophys J. 1997 May;72(5):2056–2067. doi: 10.1016/S0006-3495(97)78849-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bourguet W., Ruff M., Chambon P., Gronemeyer H., Moras D. Crystal structure of the ligand-binding domain of the human nuclear receptor RXR-alpha. Nature. 1995 Jun 1;375(6530):377–382. doi: 10.1038/375377a0. [DOI] [PubMed] [Google Scholar]
  6. Brent G. A., Dunn M. K., Harney J. W., Gulick T., Larsen P. R., Moore D. D. Thyroid hormone aporeceptor represses T3-inducible promoters and blocks activity of the retinoic acid receptor. New Biol. 1989 Dec;1(3):329–336. [PubMed] [Google Scholar]
  7. Brzozowski A. M., Pike A. C., Dauter Z., Hubbard R. E., Bonn T., Engström O., Ohman L., Greene G. L., Gustafsson J. A., Carlquist M. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature. 1997 Oct 16;389(6652):753–758. doi: 10.1038/39645. [DOI] [PubMed] [Google Scholar]
  8. Damm K., Thompson C. C., Evans R. M. Protein encoded by v-erbA functions as a thyroid-hormone receptor antagonist. Nature. 1989 Jun 22;339(6226):593–597. doi: 10.1038/339593a0. [DOI] [PubMed] [Google Scholar]
  9. Driscoll J. E., Seachord C. L., Lupisella J. A., Darveau R. P., Reczek P. R. Ligand-induced conformational changes in the human retinoic acid receptor detected using monoclonal antibodies. J Biol Chem. 1996 Sep 20;271(38):22969–22975. doi: 10.1074/jbc.271.38.22969. [DOI] [PubMed] [Google Scholar]
  10. Evans E., Ritchie K. Dynamic strength of molecular adhesion bonds. Biophys J. 1997 Apr;72(4):1541–1555. doi: 10.1016/S0006-3495(97)78802-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Freedman L. P., Luisi B. F. On the mechanism of DNA binding by nuclear hormone receptors: a structural and functional perspective. J Cell Biochem. 1993 Feb;51(2):140–150. doi: 10.1002/jcb.240510205. [DOI] [PubMed] [Google Scholar]
  12. Grubmüller H., Heymann B., Tavan P. Ligand binding: molecular mechanics calculation of the streptavidin-biotin rupture force. Science. 1996 Feb 16;271(5251):997–999. doi: 10.1126/science.271.5251.997. [DOI] [PubMed] [Google Scholar]
  13. Humphrey W., Dalke A., Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996 Feb;14(1):33-8, 27-8. doi: 10.1016/0263-7855(96)00018-5. [DOI] [PubMed] [Google Scholar]
  14. Humphrey W., Logunov I., Schulten K., Sheves M. Molecular dynamics study of bacteriorhodopsin and artificial pigments. Biochemistry. 1994 Mar 29;33(12):3668–3678. doi: 10.1021/bi00178a025. [DOI] [PubMed] [Google Scholar]
  15. Isralewitz B., Izrailev S., Schulten K. Binding pathway of retinal to bacterio-opsin: a prediction by molecular dynamics simulations. Biophys J. 1997 Dec;73(6):2972–2979. doi: 10.1016/S0006-3495(97)78326-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Izrailev S., Stepaniants S., Balsera M., Oono Y., Schulten K. Molecular dynamics study of unbinding of the avidin-biotin complex. Biophys J. 1997 Apr;72(4):1568–1581. doi: 10.1016/S0006-3495(97)78804-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Judelson C., Privalsky M. L. DNA recognition by normal and oncogenic thyroid hormone receptors. Unexpected diversity in half-site specificity controlled by non-zinc-finger determinants. J Biol Chem. 1996 May 3;271(18):10800–10805. doi: 10.1074/jbc.271.18.10800. [DOI] [PubMed] [Google Scholar]
  18. Klaholz B. P., Renaud J. P., Mitschler A., Zusi C., Chambon P., Gronemeyer H., Moras D. Conformational adaptation of agonists to the human nuclear receptor RAR gamma. Nat Struct Biol. 1998 Mar;5(3):199–202. doi: 10.1038/nsb0398-199. [DOI] [PubMed] [Google Scholar]
  19. Kosztin D., Bishop T. C., Schulten K. Binding of the estrogen receptor to DNA. The role of waters. Biophys J. 1997 Aug;73(2):557–570. doi: 10.1016/S0006-3495(97)78093-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Krust A., Green S., Argos P., Kumar V., Walter P., Bornert J. M., Chambon P. The chicken oestrogen receptor sequence: homology with v-erbA and the human oestrogen and glucocorticoid receptors. EMBO J. 1986 May;5(5):891–897. doi: 10.1002/j.1460-2075.1986.tb04300.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kumar V., Green S., Stack G., Berry M., Jin J. R., Chambon P. Functional domains of the human estrogen receptor. Cell. 1987 Dec 24;51(6):941–951. doi: 10.1016/0092-8674(87)90581-2. [DOI] [PubMed] [Google Scholar]
  22. Lee J. W., Ryan F., Swaffield J. C., Johnston S. A., Moore D. D. Interaction of thyroid-hormone receptor with a conserved transcriptional mediator. Nature. 1995 Mar 2;374(6517):91–94. doi: 10.1038/374091a0. [DOI] [PubMed] [Google Scholar]
  23. Lu H., Isralewitz B., Krammer A., Vogel V., Schulten K. Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation. Biophys J. 1998 Aug;75(2):662–671. doi: 10.1016/S0006-3495(98)77556-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Marrink S. J., Berger O., Tieleman P., Jähnig F. Adhesion forces of lipids in a phospholipid membrane studied by molecular dynamics simulations. Biophys J. 1998 Feb;74(2 Pt 1):931–943. doi: 10.1016/S0006-3495(98)74016-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Martinez E., Moore D. D., Keller E., Pearce D., Robinson V., MacDonald P. N., Simons S. S., Jr, Sanchez E., Danielsen M. The Nuclear Receptor Resource Project. Nucleic Acids Res. 1997 Jan 1;25(1):163–165. doi: 10.1093/nar/25.1.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nicholls A., Sharp K. A., Honig B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins. 1991;11(4):281–296. doi: 10.1002/prot.340110407. [DOI] [PubMed] [Google Scholar]
  27. Ostrowski J., Roalsvig T., Hammer L., Marinier A., Starrett J. E., Jr, Yu K. L., Reczek P. R. Serine 232 and methionine 272 define the ligand binding pocket in retinoic acid receptor subtypes. J Biol Chem. 1998 Feb 6;273(6):3490–3495. doi: 10.1074/jbc.273.6.3490. [DOI] [PubMed] [Google Scholar]
  28. Renaud J. P., Rochel N., Ruff M., Vivat V., Chambon P., Gronemeyer H., Moras D. Crystal structure of the RAR-gamma ligand-binding domain bound to all-trans retinoic acid. Nature. 1995 Dec 14;378(6558):681–689. doi: 10.1038/378681a0. [DOI] [PubMed] [Google Scholar]
  29. Tanenbaum D. M., Wang Y., Williams S. P., Sigler P. B. Crystallographic comparison of the estrogen and progesterone receptor's ligand binding domains. Proc Natl Acad Sci U S A. 1998 May 26;95(11):5998–6003. doi: 10.1073/pnas.95.11.5998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wagner R. L., Apriletti J. W., McGrath M. E., West B. L., Baxter J. D., Fletterick R. J. A structural role for hormone in the thyroid hormone receptor. Nature. 1995 Dec 14;378(6558):690–697. doi: 10.1038/378690a0. [DOI] [PubMed] [Google Scholar]
  31. Williams S. P., Sigler P. B. Atomic structure of progesterone complexed with its receptor. Nature. 1998 May 28;393(6683):392–396. doi: 10.1038/30775. [DOI] [PubMed] [Google Scholar]
  32. van Aalten D. M., de Groot B. L., Berendsen H. J., Findlay J. B. Conformational analysis of retinoids and restriction of their dynamics by retinoid-binding proteins. Biochem J. 1996 Oct 15;319(Pt 2):543–550. doi: 10.1042/bj3190543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. vom Baur E., Harbers M., Um S. J., Benecke A., Chambon P., Losson R. The yeast Ada complex mediates the ligand-dependent activation function AF-2 of retinoid X and estrogen receptors. Genes Dev. 1998 May 1;12(9):1278–1289. doi: 10.1101/gad.12.9.1278. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES