Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Biophysical Journal logoLink to Biophysical Journal
. 1999 Jan;76(1 Pt 1):342–350. doi: 10.1016/S0006-3495(99)77201-2

Ceramides in phospholipid membranes: effects on bilayer stability and transition to nonlamellar phases.

M P Veiga 1, J L Arrondo 1, F M Goñi 1, A Alonso 1
PMCID: PMC1302523  PMID: 9876146

Abstract

The effects of ceramides of natural origin on the gel-fluid and lamellar-inverted hexagonal phase transitions of phospholipids (mainly dielaidoylphosphatidylethanolamine) have been studied by differential scanning calorimetry, with additional support from infrared and 31P nuclear magnetic resonance (NMR) spectroscopy. In the lamellar phase, ceramides do not mix ideally with phospholipids, giving rise to the coexistence of domains that undergo the gel-fluid transition at different temperatures. The combination of differential scanning calorimetry and infrared spectroscopy, together with the use of deuterated lipids, allows the demonstration of independent melting temperatures for phospholipid and ceramide in the mixtures. In the lamellar-hexagonal phase transitions, ceramides (up to 15 mol %) decrease the transition temperature, without significantly modifying the transition enthalpy, thus facilitating the inverted hexagonal phase formation. 31P-NMR indicates the coexistence, within a certain range of temperatures, of lamellar and hexagonal phases, or hexagonal phase precursors. Ceramides from egg or from bovine brain are very similar in their effects on the lamellar-hexagonal transition. They are also comparable to diacylglycerides in this respect, although ceramides are less potent. These results are relevant in the interpretation of certain forms of interfacial enzyme activation and in the regulation and dynamics of the bilayer structure of cell membranes.

Full Text

The Full Text of this article is available as a PDF (100.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Basanez G., Nieva J. L., Rivas E., Alonso A., Goni F. M. Diacylglycerol and the promotion of lamellar-hexagonal and lamellar-isotropic phase transitions in lipids: implications for membrane fusion. Biophys J. 1996 May;70(5):2299–2306. doi: 10.1016/S0006-3495(96)79795-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Basáez G., Goñi F. M., Alonso A. Effect of single chain lipids on phospholipase C-promoted vesicle fusion. A test for the stalk hypothesis of membrane fusion. Biochemistry. 1998 Mar 17;37(11):3901–3908. doi: 10.1021/bi9728497. [DOI] [PubMed] [Google Scholar]
  3. Basáez G., Nieva J. L., Goñi F. M., Alonso A. Origin of the lag period in the phospholipase C cleavage of phospholipids in membranes. Concomitant vesicle aggregation and enzyme activation. Biochemistry. 1996 Dec 3;35(48):15183–15187. doi: 10.1021/bi9616561. [DOI] [PubMed] [Google Scholar]
  4. Basáez G., Ruiz-Argüello M. B., Alonso A., Goñi F. M., Karlsson G., Edwards K. Morphological changes induced by phospholipase C and by sphingomyelinase on large unilamellar vesicles: a cryo-transmission electron microscopy study of liposome fusion. Biophys J. 1997 Jun;72(6):2630–2637. doi: 10.1016/S0006-3495(97)78906-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berridge M. J. Inositol lipids and cell proliferation. Biochim Biophys Acta. 1987 Apr 20;907(1):33–45. doi: 10.1016/0304-419x(87)90017-5. [DOI] [PubMed] [Google Scholar]
  6. Castresana J., Nieva J. L., Rivas E., Alonso A. Partial dehydration of phosphatidylethanolamine phosphate groups during hexagonal phase formation, as seen by i.r. spectroscopy. Biochem J. 1992 Mar 1;282(Pt 2):467–470. doi: 10.1042/bj2820467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Das S., Rand R. P. Diacylglycerol causes major structural transitions in phospholipid bilayer membranes. Biochem Biophys Res Commun. 1984 Oct 30;124(2):491–496. doi: 10.1016/0006-291x(84)91580-8. [DOI] [PubMed] [Google Scholar]
  8. Das S., Rand R. P. Modification by diacylglycerol of the structure and interaction of various phospholipid bilayer membranes. Biochemistry. 1986 May 20;25(10):2882–2889. doi: 10.1021/bi00358a022. [DOI] [PubMed] [Google Scholar]
  9. De Boeck H., Zidovetzki R. Effects of diacylglycerols on the structure of phosphatidylcholine bilayers: a 2H and 31P NMR study. Biochemistry. 1989 Sep 5;28(18):7439–7446. doi: 10.1021/bi00444a043. [DOI] [PubMed] [Google Scholar]
  10. Dibble A. R., Hinderliter A. K., Sando J. J., Biltonen R. L. Lipid lateral heterogeneity in phosphatidylcholine/phosphatidylserine/diacylglycerol vesicles and its influence on protein kinase C activation. Biophys J. 1996 Oct;71(4):1877–1890. doi: 10.1016/S0006-3495(96)79387-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Echabe I., Requero M. A., Goñi F. M., Arrondo J. L., Alonso A. An infrared investigation of palmitoyl-coenzyme A and palmitoylcarnitine interaction with perdeuterated-chain phospholipid bilayers. Eur J Biochem. 1995 Jul 1;231(1):199–203. doi: 10.1111/j.1432-1033.1995.0199f.x. [DOI] [PubMed] [Google Scholar]
  12. Elias P. M., Goerke J., Friend D. S. Mammalian epidermal barrier layer lipids: composition and influence on structure. J Invest Dermatol. 1977 Dec;69(6):535–546. doi: 10.1111/1523-1747.ep12687968. [DOI] [PubMed] [Google Scholar]
  13. Epand R. M. Diacylglycerols, lysolecithin, or hydrocarbons markedly alter the bilayer to hexagonal phase transition temperature of phosphatidylethanolamines. Biochemistry. 1985 Dec 3;24(25):7092–7095. doi: 10.1021/bi00346a011. [DOI] [PubMed] [Google Scholar]
  14. Epand R. M., Epand R. F., Lancaster C. R. Modulation of the bilayer to hexagonal phase transition of phosphatidylethanolamines by acylglycerols. Biochim Biophys Acta. 1988 Nov 22;945(2):161–166. doi: 10.1016/0005-2736(88)90478-6. [DOI] [PubMed] [Google Scholar]
  15. Epand R. M., Lemay C. T. Lipid concentration affects the kinetic stability of dielaidoylphosphatidylethanolamine bilayers. Chem Phys Lipids. 1993 Dec;66(3):181–187. doi: 10.1016/0009-3084(93)90003-l. [DOI] [PubMed] [Google Scholar]
  16. Gray G. M., White R. J. Glycosphingolipids and ceramides in human and pig epidermis. J Invest Dermatol. 1978 Jun;70(6):336–341. doi: 10.1111/1523-1747.ep12543527. [DOI] [PubMed] [Google Scholar]
  17. Han C. H., Sanftleben R., Wiedmann T. S. Phase properties of mixtures of ceramides. Lipids. 1995 Feb;30(2):121–128. doi: 10.1007/BF02538264. [DOI] [PubMed] [Google Scholar]
  18. Hannun Y. A., Obeid L. M. Ceramide: an intracellular signal for apoptosis. Trends Biochem Sci. 1995 Feb;20(2):73–77. doi: 10.1016/s0968-0004(00)88961-6. [DOI] [PubMed] [Google Scholar]
  19. Heimburg T., Würz U., Marsh D. Binary phase diagram of hydrated dimyristoylglycerol-dimyristoylphosphatidylcholine mixtures. Biophys J. 1992 Nov;63(5):1369–1378. doi: 10.1016/S0006-3495(92)81714-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Holopainen J. M., Lehtonen J. Y., Kinnunen P. K. Lipid microdomains in dimyristoylphosphatidylcholine-ceramide liposomes. Chem Phys Lipids. 1997 Aug 8;88(1):1–13. doi: 10.1016/s0009-3084(97)00040-6. [DOI] [PubMed] [Google Scholar]
  21. Huang H. W., Goldberg E. M., Zidovetzki R. Ceramide induces structural defects into phosphatidylcholine bilayers and activates phospholipase A2. Biochem Biophys Res Commun. 1996 Mar 27;220(3):834–838. doi: 10.1006/bbrc.1996.0490. [DOI] [PubMed] [Google Scholar]
  22. Kolesnick R. N. Sphingomyelinase action inhibits phorbol ester-induced differentiation of human promyelocytic leukemic (HL-60) cells. J Biol Chem. 1989 May 5;264(13):7617–7623. [PubMed] [Google Scholar]
  23. Leikin S., Kozlov M. M., Fuller N. L., Rand R. P. Measured effects of diacylglycerol on structural and elastic properties of phospholipid membranes. Biophys J. 1996 Nov;71(5):2623–2632. doi: 10.1016/S0006-3495(96)79454-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Luzzati V. Biological significance of lipid polymorphism: the cubic phases. Curr Opin Struct Biol. 1997 Oct;7(5):661–668. doi: 10.1016/s0959-440x(97)80075-9. [DOI] [PubMed] [Google Scholar]
  25. López-García F., Micol V., Villalaín J., Gómez-Fernández J. C. Infrared spectroscopic study of the interaction of diacylglycerol with phosphatidylserine in the presence of calcium. Biochim Biophys Acta. 1993 Sep 8;1169(3):264–272. doi: 10.1016/0005-2760(93)90250-d. [DOI] [PubMed] [Google Scholar]
  26. López-García F., Villalaín J., Gómez-Fernández J. C., Quinn P. J. The phase behavior of mixed aqueous dispersions of dipalmitoyl derivatives of phosphatidylcholine and diacylglycerol. Biophys J. 1994 Jun;66(6):1991–2004. doi: 10.1016/S0006-3495(94)80992-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Michell R. H., Wakelam M. J. Second messengers. Sphingolipid signalling. Curr Biol. 1994 Apr 1;4(4):370–373. doi: 10.1016/s0960-9822(00)00083-x. [DOI] [PubMed] [Google Scholar]
  28. Moore D. J., Rerek M. E., Mendelsohn R. Lipid domains and orthorhombic phases in model stratum corneum: evidence from Fourier transform infrared spectroscopy studies. Biochem Biophys Res Commun. 1997 Feb 24;231(3):797–801. doi: 10.1006/bbrc.1997.6189. [DOI] [PubMed] [Google Scholar]
  29. Nieva J. L., Alonso A., Basáez G., Goñi F. M., Gulik A., Vargas R., Luzzati V. Topological properties of two cubic phases of a phospholipid:cholesterol:diacylglycerol aqueous system and their possible implications in the phospholipase C-induced liposome fusion. FEBS Lett. 1995 Jul 10;368(1):143–147. doi: 10.1016/0014-5793(95)00631-i. [DOI] [PubMed] [Google Scholar]
  30. Ortiz A., Villalaín J., Gómez-Fernández J. C. Interaction of diacylglycerols with phosphatidylcholine vesicles as studied by differential scanning calorimetry and fluorescence probe depolarization. Biochemistry. 1988 Dec 13;27(25):9030–9036. doi: 10.1021/bi00425a022. [DOI] [PubMed] [Google Scholar]
  31. Ruiz-Argüello M. B., Basáez G., Goñi F. M., Alonso A. Different effects of enzyme-generated ceramides and diacylglycerols in phospholipid membrane fusion and leakage. J Biol Chem. 1996 Oct 25;271(43):26616–26621. doi: 10.1074/jbc.271.43.26616. [DOI] [PubMed] [Google Scholar]
  32. Ruiz-Argüello M. B., Goñi F. M., Alonso A. Vesicle membrane fusion induced by the concerted activities of sphingomyelinase and phospholipase C. J Biol Chem. 1998 Sep 4;273(36):22977–22982. doi: 10.1074/jbc.273.36.22977. [DOI] [PubMed] [Google Scholar]
  33. Shah J., Atienza J. M., Duclos R. I., Jr, Rawlings A. V., Dong Z., Shipley G. G. Structural and thermotropic properties of synthetic C16:0 (palmitoyl) ceramide: effect of hydration. J Lipid Res. 1995 Sep;36(9):1936–1944. [PubMed] [Google Scholar]
  34. Shah J., Atienza J. M., Rawlings A. V., Shipley G. G. Physical properties of ceramides: effect of fatty acid hydroxylation. J Lipid Res. 1995 Sep;36(9):1945–1955. [PubMed] [Google Scholar]
  35. Siegel D. P., Banschbach J. L. Lamellar/inverted cubic (L alpha/QII) phase transition in N-methylated dioleoylphosphatidylethanolamine. Biochemistry. 1990 Jun 26;29(25):5975–5981. doi: 10.1021/bi00477a014. [DOI] [PubMed] [Google Scholar]
  36. Siegel D. P. Energetics of intermediates in membrane fusion: comparison of stalk and inverted micellar intermediate mechanisms. Biophys J. 1993 Nov;65(5):2124–2140. doi: 10.1016/S0006-3495(93)81256-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Siegel D. P., Epand R. M. The mechanism of lamellar-to-inverted hexagonal phase transitions in phosphatidylethanolamine: implications for membrane fusion mechanisms. Biophys J. 1997 Dec;73(6):3089–3111. doi: 10.1016/S0006-3495(97)78336-X. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES