Abstract
In contrast to animal cells, plant cells contain approximately 5-50 mM nitrate in cytosol and vacuole. The lack of specific spectroscopic probes, or suitable isotopes, impedes in vitro studies of NO3- transport. Reconstitution of root cell plasma membrane (PM) proteins in mixed soybean lipid:egg phosphatidylcholine allowed for the generation of large K+-valinomycin diffusion potentials (Em), monitored with the oxonol VI dye. Nevertheless, Em was restricted to approximately 130 mV by capacitor properties of biological membranes. This caused an increasing discrepancy at higher K+-Nernst potentials used for calibration. Therefore, Em was determined directly from the fluorescence of the dye free in buffer, bound at zero Em, and bound upon Em generation. Then, an electrophysiological analysis of the NO3--dependent dissipation rate of Em gave the net passive flux (JN) and the permeability coefficient to NO3- (PN). The plant root cell PM exhibited a strikingly large PN (higher than 10(-9) m s-1) at high Em (90-100 mV) and pH 6.5. At low Em (50-60 mV) and pH 7.4, PN decreased by 70-fold and became similar to that of the lipid bilayer. This agreed with the previous observation that 15 mM NO3- short-circuits the plant root PM H+-ATPase at its optimal pH of 6.5.
Full Text
The Full Text of this article is available as a PDF (176.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Apell H. J., Bersch B. Oxonol VI as an optical indicator for membrane potentials in lipid vesicles. Biochim Biophys Acta. 1987 Oct 16;903(3):480–494. doi: 10.1016/0005-2736(87)90055-1. [DOI] [PubMed] [Google Scholar]
- Bammel B. P., Brand J. A., Simmons R. B., Evans D., Smith J. C. The interaction of potential-sensitive molecular probes with dimyristoylphosphatidylcholine vesicles investigated by 31P-NMR and electron microscopy. Biochim Biophys Acta. 1987 Jan 26;896(2):136–152. doi: 10.1016/0005-2736(87)90174-x. [DOI] [PubMed] [Google Scholar]
- Bashford C. L., Chance B., Prince R. C. Oxonol dyes as monitors of membrane potential. Their behavior in photosynthetic bacteria. Biochim Biophys Acta. 1979 Jan 11;545(1):46–57. doi: 10.1016/0005-2728(79)90112-9. [DOI] [PubMed] [Google Scholar]
- Beyer C. F., Craig L. C., Gibbons W. A. Interaction of the fluorescent probe 2-p-toluidinylnaphthalene-6-sulfonate with peptides. Structural requirements for binding and fluorescence enhancement. Biochemistry. 1972 Dec 19;11(26):4920–4926. doi: 10.1021/bi00776a007. [DOI] [PubMed] [Google Scholar]
- Clarke R. J., Apell H. J. A stopped-flow kinetic study of the interaction of potential-sensitive oxonol dyes with lipid vesicles. Biophys Chem. 1989 Nov;34(3):225–237. doi: 10.1016/0301-4622(89)80061-4. [DOI] [PubMed] [Google Scholar]
- De Michelis M. I., Spanswick R. M. H-pumping driven by the vanadate-sensitive ATPase in membrane vesicles from corn roots. Plant Physiol. 1986 Jun;81(2):542–547. doi: 10.1104/pp.81.2.542. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Galtier N., Belver A., Gibrat R., Grouzis J. P., Rigaud J., Grignon C. Preparation of Corn Root Plasmalemma with Low Mg-ATPase Latency and High Electrogenic H Pumping Activity after Phase Partitioning. Plant Physiol. 1988 Jun;87(2):491–497. doi: 10.1104/pp.87.2.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibrat R., Romieu C., Grignon C. A procedure for estimating the surface potential of charged or neutral membranes with 8-anilino-1-naphthalenesulphonate probe. Adequacy of the Gouy-Chapman model. Biochim Biophys Acta. 1983 Dec 21;736(2):196–202. doi: 10.1016/0005-2736(83)90284-5. [DOI] [PubMed] [Google Scholar]
- Gradmann D., Hansen U. P., Long W. S., Slayman C. L., Warncke J. Current-voltage relationships for the plasma membrane and its principal electrogenic pump in Neurospora crassa: I. Steady-state conditions. J Membr Biol. 1978 Mar 20;39(4):333–367. doi: 10.1007/BF01869898. [DOI] [PubMed] [Google Scholar]
- Grouzis J. P., Pouliquin P., Rigaud J., Grignon C., Gibrat R. In vitro study of passive nitrate transport by native and reconstituted plasma membrane vesicles from corn root cells. Biochim Biophys Acta. 1997 Apr 26;1325(2):329–342. doi: 10.1016/s0005-2736(96)00256-8. [DOI] [PubMed] [Google Scholar]
- Gutknecht J., Walter A. Hydrofluoric and nitric acid transport through lipid bilayer membranes. Biochim Biophys Acta. 1981 Jun 9;644(1):153–156. doi: 10.1016/0005-2736(81)90071-7. [DOI] [PubMed] [Google Scholar]
- Hedrich R., Marten I. Malate-induced feedback regulation of plasma membrane anion channels could provide a CO2 sensor to guard cells. EMBO J. 1993 Mar;12(3):897–901. doi: 10.1002/j.1460-2075.1993.tb05730.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huang J. W., Grunes D. L., Kochian L. V. Voltage-dependent Ca2+ influx into right-side-out plasma membrane vesicles isolated from wheat roots: characterization of a putative Ca2+ channel. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3473–3477. doi: 10.1073/pnas.91.8.3473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaestner K. H., Sze H. Potential-dependent anion transport in tonoplast vesicles from oat roots. Plant Physiol. 1987 Mar;83(3):483–489. doi: 10.1104/pp.83.3.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Läuger P. Kinetic properties of ion carriers and channels. J Membr Biol. 1980 Dec 30;57(3):163–78(-RETURN-). doi: 10.1007/BF01869585. [DOI] [PubMed] [Google Scholar]
- Mueller P., Chien T. F., Rudy B. Formation and properties of cell-size lipid bilayer vesicles. Biophys J. 1983 Dec;44(3):375–381. doi: 10.1016/S0006-3495(83)84311-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohki S. Membrane potential, surface potential, and ionic permeabilities. Physiol Chem Phys. 1981;13(3):195–210. [PubMed] [Google Scholar]
- Ollivon M., Walter A., Blumenthal R. Sizing and separation of liposomes, biological vesicles, and viruses by high-performance liquid chromatography. Anal Biochem. 1986 Feb 1;152(2):262–274. doi: 10.1016/0003-2697(86)90408-2. [DOI] [PubMed] [Google Scholar]
- Reynolds J. A., Nozaki Y., Tanford C. Gel-exclusion chromatography on S1000 Sephacryl: application to phospholipid vesicles. Anal Biochem. 1983 Apr 15;130(2):471–474. doi: 10.1016/0003-2697(83)90618-8. [DOI] [PubMed] [Google Scholar]
- Ros R., Romieu C., Gibrat R., Grignon C. The plant inorganic pyrophosphatase does not transport K+ in vacuole membrane vesicles multilabeled with fluorescent probes for H+, K+, and membrane potential. J Biol Chem. 1995 Mar 3;270(9):4368–4374. doi: 10.1074/jbc.270.9.4368. [DOI] [PubMed] [Google Scholar]
- Rossignol M., Thomas P., Grignon C. Proton permeability of liposomes from natural phospholipid mixtures. Biochim Biophys Acta. 1982 Jan 22;684(2):195–199. doi: 10.1016/0005-2736(82)90005-0. [DOI] [PubMed] [Google Scholar]
- Rottenberg H. Proton electrochemical potential gradient in vesicles, organelles, and prokaryotic cells. Methods Enzymol. 1989;172:63–84. doi: 10.1016/s0076-6879(89)72008-5. [DOI] [PubMed] [Google Scholar]
- Ryan P. R., Skerrett M., Findlay G. P., Delhaize E., Tyerman S. D. Aluminum activates an anion channel in the apical cells of wheat roots. Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6547–6552. doi: 10.1073/pnas.94.12.6547. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schachtman D. P., Schroeder J. I., Lucas W. J., Anderson J. A., Gaber R. F. Expression of an inward-rectifying potassium channel by the Arabidopsis KAT1 cDNA. Science. 1992 Dec 4;258(5088):1654–1658. doi: 10.1126/science.8966547. [DOI] [PubMed] [Google Scholar]
- Schachtman D. P., Tyerman S. D., Terry B. R. The k/na selectivity of a cation channel in the plasma membrane of root cells does not differ in salt-tolerant and salt-sensitive wheat species. Plant Physiol. 1991 Oct;97(2):598–605. doi: 10.1104/pp.97.2.598. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schaffner W., Weissmann C. A rapid, sensitive, and specific method for the determination of protein in dilute solution. Anal Biochem. 1973 Dec;56(2):502–514. doi: 10.1016/0003-2697(73)90217-0. [DOI] [PubMed] [Google Scholar]
- Schlieper P., Medda P. K., Kaufmann R. Drug-induced zeta potential changes in liposomes studied by laser Doppler spectroscopy. Biochim Biophys Acta. 1981 Jun 22;644(2):273–283. doi: 10.1016/0005-2736(81)90385-0. [DOI] [PubMed] [Google Scholar]
- Schmidt C., Schroeder J. I. Anion Selectivity of Slow Anion Channels in the Plasma Membrane of Guard Cells (Large Nitrate Permeability). Plant Physiol. 1994 Sep;106(1):383–391. doi: 10.1104/pp.106.1.383. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simon-Plas F., Venema K., Grouzis J. P., Gibrat R., Rigaud J., Grignon C. Spontaneous insertion of plant plasma membrane (H+)ATPase into a preformed bilayer. J Membr Biol. 1991 Feb;120(1):51–58. doi: 10.1007/BF01868590. [DOI] [PubMed] [Google Scholar]
- Sukhorukov V. L., Djuzenova C. S., Arnold W. M., Zimmermann U. DNA, protein, and plasma-membrane incorporation by arrested mammalian cells. J Membr Biol. 1994 Oct;142(1):77–92. doi: 10.1007/BF00233385. [DOI] [PubMed] [Google Scholar]
- Teissie J., Tsong T. Y. Electric field induced transient pores in phospholipid bilayer vesicles. Biochemistry. 1981 Mar 17;20(6):1548–1554. doi: 10.1021/bi00509a022. [DOI] [PubMed] [Google Scholar]
- Thibaud J. B., Soler A., Grignon C. H and k electrogenic exchanges in corn roots. Plant Physiol. 1986 Jul;81(3):847–853. doi: 10.1104/pp.81.3.847. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Venema K., Gibrat R., Grouzis J. P., Grignon C. Quantitative measurement of cationic fluxes, selectivity and membrane potential using liposomes multilabelled with fluorescent probes. Biochim Biophys Acta. 1993 Feb 23;1146(1):87–96. doi: 10.1016/0005-2736(93)90342-w. [DOI] [PubMed] [Google Scholar]
- Verhoven B., Schlegel R. A., Williamson P. Rapid loss and restoration of lipid asymmetry by different pathways in resealed erythrocyte ghosts. Biochim Biophys Acta. 1992 Feb 17;1104(1):15–23. doi: 10.1016/0005-2736(92)90126-7. [DOI] [PubMed] [Google Scholar]
- Véry A. A., Gaymard F., Bosseux C., Sentenac H., Thibaud J. B. Expression of a cloned plant K+ channel in Xenopus oocytes: analysis of macroscopic currents. Plant J. 1995 Feb;7(2):321–332. doi: 10.1046/j.1365-313x.1995.7020321.x. [DOI] [PubMed] [Google Scholar]