Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Jan;76(1 Pt 1):374–386. doi: 10.1016/S0006-3495(99)77204-8

Membrane fusion in vesicles of oligomerizable lipids.

B J Ravoo 1, W D Weringa 1, J B Engberts 1
PMCID: PMC1302526  PMID: 9876149

Abstract

Membrane fusion has been examined in a model system of small unilamellar vesicles of synthetic lipids that can be oligomerized through the lipid headgroups. The oligomerization can be induced either in both bilayer leaflets or in the inner leaflet exclusively. Oligomerization leads to denser lipid headgroup packing, with concomitant reduction of lipid lateral diffusion and membrane permeability. As evidenced by lipid mixing assays, electron microscopy, and light scattering, calcium-induced fusion of the bilayer vesicles is strongly retarded and inhibited by oligomerization. Remarkably, oligomerization of only the inner leaflet of the bilayer is already sufficient to affect fusion. The efficiency of inhibition and retardation of fusion critically depend on the relative amount of oligomeric lipid present, on the concentration of calcium ions, and on temperature. Implications for the mechanism of bilayer membrane fusion are discussed in terms of lipid lateral diffusion and membrane curvature effects.

Full Text

The Full Text of this article is available as a PDF (183.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bittman R., Clejan S., Lund-Katz S., Phillips M. C. Influence of cholesterol on bilayers of ester- and ether-linked phospholipids. Permeability and 13C-nuclear magnetic resonance measurements. Biochim Biophys Acta. 1984 May 16;772(2):117–126. doi: 10.1016/0005-2736(84)90034-8. [DOI] [PubMed] [Google Scholar]
  2. Burnell E. E., Cullis P. R., de Kruijff B. Effects of tumbling and lateral diffusion on phosphatidylcholine model membrane 31P-NMR lineshapes. Biochim Biophys Acta. 1980 Dec 2;603(1):63–69. doi: 10.1016/0005-2736(80)90391-0. [DOI] [PubMed] [Google Scholar]
  3. Chanturiya A., Chernomordik L. V., Zimmerberg J. Flickering fusion pores comparable with initial exocytotic pores occur in protein-free phospholipid bilayers. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14423–14428. doi: 10.1073/pnas.94.26.14423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chernomordik L. V., Vogel S. S., Sokoloff A., Onaran H. O., Leikina E. A., Zimmerberg J. Lysolipids reversibly inhibit Ca(2+)-, GTP- and pH-dependent fusion of biological membranes. FEBS Lett. 1993 Feb 22;318(1):71–76. doi: 10.1016/0014-5793(93)81330-3. [DOI] [PubMed] [Google Scholar]
  5. Chernomordik L. V., Zimmerberg J. Bending membranes to the task: structural intermediates in bilayer fusion. Curr Opin Struct Biol. 1995 Aug;5(4):541–547. doi: 10.1016/0959-440x(95)80041-7. [DOI] [PubMed] [Google Scholar]
  6. Chernomordik L., Chanturiya A., Green J., Zimmerberg J. The hemifusion intermediate and its conversion to complete fusion: regulation by membrane composition. Biophys J. 1995 Sep;69(3):922–929. doi: 10.1016/S0006-3495(95)79966-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chernomordik L., Kozlov M. M., Zimmerberg J. Lipids in biological membrane fusion. J Membr Biol. 1995 Jul;146(1):1–14. doi: 10.1007/BF00232676. [DOI] [PubMed] [Google Scholar]
  8. Cullis P. R. Lateral diffusion rates of phosphatidylcholine in vesicle membranes: effects of cholesterol and hydrocarbon phase transitions. FEBS Lett. 1976 Nov;70(1):223–228. doi: 10.1016/0014-5793(76)80762-4. [DOI] [PubMed] [Google Scholar]
  9. Cullis P. R., de Kruijff B. Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim Biophys Acta. 1979 Dec 20;559(4):399–420. doi: 10.1016/0304-4157(79)90012-1. [DOI] [PubMed] [Google Scholar]
  10. Düzgünes N., Nir S., Wilschut J., Bentz J., Newton C., Portis A., Papahadjopoulos D. Calcium- and magnesium-induced fusion of mixed phosphatidylserine/phosphatidylcholine vesicles: effect of ion binding. J Membr Biol. 1981 Apr 15;59(2):115–125. doi: 10.1007/BF01875709. [DOI] [PubMed] [Google Scholar]
  11. Düzgüneş N., Wilschut J., Fraley R., Papahadjopoulos D. Studies on the mechanism of membrane fusion. Role of head-group composition in calcium- and magnesium-induced fusion of mixed phospholipid vesicles. Biochim Biophys Acta. 1981 Mar 20;642(1):182–195. doi: 10.1016/0005-2736(81)90148-6. [DOI] [PubMed] [Google Scholar]
  12. Fendler J. H. Polymerized surfactant vesicles: novel membrane mimetic systems. Science. 1984 Mar 2;223(4639):888–894. doi: 10.1126/science.223.4639.888. [DOI] [PubMed] [Google Scholar]
  13. Frederik P. M., Burger K. N., Stuart M. C., Verkleij A. J. Lipid polymorphism as observed by cryo-electron microscopy. Biochim Biophys Acta. 1991 Feb 25;1062(2):133–141. doi: 10.1016/0005-2736(91)90384-k. [DOI] [PubMed] [Google Scholar]
  14. Frederik P. M., Stuart M. C., Verkleij A. J. Intermediary structures during membrane fusion as observed by cryo-electron microscopy. Biochim Biophys Acta. 1989 Feb 27;979(2):275–278. doi: 10.1016/0005-2736(89)90445-8. [DOI] [PubMed] [Google Scholar]
  15. Haverstick D. M., Glaser M. Visualization of Ca2+-induced phospholipid domains. Proc Natl Acad Sci U S A. 1987 Jul;84(13):4475–4479. doi: 10.1073/pnas.84.13.4475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hay J. C., Scheller R. H. SNAREs and NSF in targeted membrane fusion. Curr Opin Cell Biol. 1997 Aug;9(4):505–512. doi: 10.1016/s0955-0674(97)80026-9. [DOI] [PubMed] [Google Scholar]
  17. Hoekstra D. Fluorescence method for measuring the kinetics of Ca2+-induced phase separations in phosphatidylserine-containing lipid vesicles. Biochemistry. 1982 Mar 2;21(5):1055–1061. doi: 10.1021/bi00534a036. [DOI] [PubMed] [Google Scholar]
  18. Hoekstra D., de Boer T., Klappe K., Wilschut J. Fluorescence method for measuring the kinetics of fusion between biological membranes. Biochemistry. 1984 Nov 20;23(24):5675–5681. doi: 10.1021/bi00319a002. [DOI] [PubMed] [Google Scholar]
  19. Hong K., Baldwin P. A., Allen T. M., Papahadjopoulos D. Fluorometric detection of the bilayer-to-hexagonal phase transition in liposomes. Biochemistry. 1988 May 31;27(11):3947–3955. doi: 10.1021/bi00411a009. [DOI] [PubMed] [Google Scholar]
  20. Hughson F. M. Molecular mechanisms of protein-mediated membrane fusion. Curr Opin Struct Biol. 1995 Aug;5(4):507–513. doi: 10.1016/0959-440x(95)80036-0. [DOI] [PubMed] [Google Scholar]
  21. Hui S. W., Nir S., Stewart T. P., Boni L. T., Huang S. K. Kinetic measurements of fusion of phosphatidylserine-containing vesicles by electron microscopy and fluorometry. Biochim Biophys Acta. 1988 Jun 22;941(2):130–140. doi: 10.1016/0005-2736(88)90173-3. [DOI] [PubMed] [Google Scholar]
  22. Hui S. W., Stewart T. P., Boni L. T., Yeagle P. L. Membrane fusion through point defects in bilayers. Science. 1981 May 22;212(4497):921–923. doi: 10.1126/science.7233185. [DOI] [PubMed] [Google Scholar]
  23. Kanaseki T., Kawasaki K., Murata M., Ikeuchi Y., Ohnishi S. Structural features of membrane fusion between influenza virus and liposome as revealed by quick-freezing electron microscopy. J Cell Biol. 1997 Jun 2;137(5):1041–1056. doi: 10.1083/jcb.137.5.1041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kragh-Hansen U., le Maire M., Nöel J. P., Gulik-Krzywicki T., Møller J. V. Transitional steps in the solubilization of protein-containing membranes and liposomes by nonionic detergent. Biochemistry. 1993 Feb 16;32(6):1648–1656. doi: 10.1021/bi00057a032. [DOI] [PubMed] [Google Scholar]
  25. Leckband D. E., Helm C. A., Israelachvili J. Role of calcium in the adhesion and fusion of bilayers. Biochemistry. 1993 Feb 2;32(4):1127–1140. doi: 10.1021/bi00055a019. [DOI] [PubMed] [Google Scholar]
  26. Lee J., Lentz B. R. Evolution of lipidic structures during model membrane fusion and the relation of this process to cell membrane fusion. Biochemistry. 1997 May 27;36(21):6251–6259. doi: 10.1021/bi970404c. [DOI] [PubMed] [Google Scholar]
  27. Lentz B. R. Polymer-induced membrane fusion: potential mechanism and relation to cell fusion events. Chem Phys Lipids. 1994 Sep 6;73(1-2):91–106. doi: 10.1016/0009-3084(94)90176-7. [DOI] [PubMed] [Google Scholar]
  28. Leventis R., Gagné J., Fuller N., Rand R. P., Silvius J. R. Divalent cation induced fusion and lipid lateral segregation in phosphatidylcholine-phosphatidic acid vesicles. Biochemistry. 1986 Nov 4;25(22):6978–6987. doi: 10.1021/bi00370a600. [DOI] [PubMed] [Google Scholar]
  29. Melikyan G. B., Brener S. A., Ok D. C., Cohen F. S. Inner but not outer membrane leaflets control the transition from glycosylphosphatidylinositol-anchored influenza hemagglutinin-induced hemifusion to full fusion. J Cell Biol. 1997 Mar 10;136(5):995–1005. doi: 10.1083/jcb.136.5.995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Nanavati C., Markin V. S., Oberhauser A. F., Fernandez J. M. The exocytotic fusion pore modeled as a lipidic pore. Biophys J. 1992 Oct;63(4):1118–1132. doi: 10.1016/S0006-3495(92)81679-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Nir S., Bentz J., Wilschut J. Mass action kinetics of phosphatidylserine vesicle fusion as monitored by coalescence of internal vesicle volumes. Biochemistry. 1980 Dec 23;19(26):6030–6036. doi: 10.1021/bi00567a013. [DOI] [PubMed] [Google Scholar]
  32. Nir S., Wilschut J., Bentz J. The rate of fusion of phospholipid vesicles and the role of bilayer curvature. Biochim Biophys Acta. 1982 May 21;688(1):275–278. doi: 10.1016/0005-2736(82)90604-6. [DOI] [PubMed] [Google Scholar]
  33. Pal R., Barenholz Y., Wagner R. R. Pyrene phospholipid as a biological fluorescent probe for studying fusion of virus membrane with liposomes. Biochemistry. 1988 Jan 12;27(1):30–36. doi: 10.1021/bi00401a006. [DOI] [PubMed] [Google Scholar]
  34. Paltauf F., Hauser H., Phillips M. C. Monolayer characteristics of some 1,2-diacyl, I-alkyl-2-acyl and 1,2-dialkyl phospholipids at the air-water interface. Biochim Biophys Acta. 1971 Dec 3;249(2):539–547. doi: 10.1016/0005-2736(71)90129-5. [DOI] [PubMed] [Google Scholar]
  35. Papahadjopoulos D., Nir S., Düzgünes N. Molecular mechanisms of calcium-induced membrane fusion. J Bioenerg Biomembr. 1990 Apr;22(2):157–179. doi: 10.1007/BF00762944. [DOI] [PubMed] [Google Scholar]
  36. Papahadjopoulos D., Vail W. J., Jacobson K., Poste G. Cochleate lipid cylinders: formation by fusion of unilamellar lipid vesicles. Biochim Biophys Acta. 1975 Jul 3;394(3):483–491. doi: 10.1016/0005-2736(75)90299-0. [DOI] [PubMed] [Google Scholar]
  37. Pink D. A., Merkel R., Quinn B., Sackmann E., Pencer J. Intersecting polymers in lipid bilayers: cliques, static order parameters and lateral diffusion. Biochim Biophys Acta. 1993 Aug 15;1150(2):189–198. doi: 10.1016/0005-2736(93)90089-i. [DOI] [PubMed] [Google Scholar]
  38. Rothman J. E. The protein machinery of vesicle budding and fusion. Protein Sci. 1996 Feb;5(2):185–194. doi: 10.1002/pro.5560050201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sackmann E., Duwe H. P., Engelhardt H. Membrane bending elasticity and its role for shape fluctuations and shape transformations of cells and vesicles. Faraday Discuss Chem Soc. 1986;(81):281–290. doi: 10.1039/dc9868100281. [DOI] [PubMed] [Google Scholar]
  40. Siegel D. P., Burns J. L., Chestnut M. H., Talmon Y. Intermediates in membrane fusion and bilayer/nonbilayer phase transitions imaged by time-resolved cryo-transmission electron microscopy. Biophys J. 1989 Jul;56(1):161–169. doi: 10.1016/S0006-3495(89)82661-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Siegel D. P. Energetics of intermediates in membrane fusion: comparison of stalk and inverted micellar intermediate mechanisms. Biophys J. 1993 Nov;65(5):2124–2140. doi: 10.1016/S0006-3495(93)81256-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Siegel D. P., Epand R. M. The mechanism of lamellar-to-inverted hexagonal phase transitions in phosphatidylethanolamine: implications for membrane fusion mechanisms. Biophys J. 1997 Dec;73(6):3089–3111. doi: 10.1016/S0006-3495(97)78336-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Siegel D. P., Green W. J., Talmon Y. The mechanism of lamellar-to-inverted hexagonal phase transitions: a study using temperature-jump cryo-electron microscopy. Biophys J. 1994 Feb;66(2 Pt 1):402–414. doi: 10.1016/s0006-3495(94)80790-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Stegmann T., Orsel J. G., Jamieson J. D., Padfield P. J. Limitations of the octadecylrhodamine dequenching assay for membrane fusion. Biochem J. 1995 May 1;307(Pt 3):875–878. doi: 10.1042/bj3070875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Stegmann T., Schoen P., Bron R., Wey J., Bartoldus I., Ortiz A., Nieva J. L., Wilschut J. Evaluation of viral membrane fusion assays. Comparison of the octadecylrhodamine dequenching assay with the pyrene excimer assay. Biochemistry. 1993 Oct 26;32(42):11330–11337. doi: 10.1021/bi00093a009. [DOI] [PubMed] [Google Scholar]
  46. Struck D. K., Hoekstra D., Pagano R. E. Use of resonance energy transfer to monitor membrane fusion. Biochemistry. 1981 Jul 7;20(14):4093–4099. doi: 10.1021/bi00517a023. [DOI] [PubMed] [Google Scholar]
  47. Verkleij A. J., De Maagd R., Leunissen-Bijvelt J., De Kruijff B. Divalent cations and chlorpromazine can induce non-bilayer structures in phosphatidic acid-containing model membranes. Biochim Biophys Acta. 1982 Jan 22;684(2):255–262. doi: 10.1016/0005-2736(82)90014-1. [DOI] [PubMed] [Google Scholar]
  48. Verkleij A. J. Lipidic intramembranous particles. Biochim Biophys Acta. 1984 Jan 27;779(1):43–63. doi: 10.1016/0304-4157(84)90003-0. [DOI] [PubMed] [Google Scholar]
  49. Weinstein J. N., Yoshikami S., Henkart P., Blumenthal R., Hagins W. A. Liposome-cell interaction: transfer and intracellular release of a trapped fluorescent marker. Science. 1977 Feb 4;195(4277):489–492. doi: 10.1126/science.835007. [DOI] [PubMed] [Google Scholar]
  50. Wilschut J., Düzgüneş N., Fraley R., Papahadjopoulos D. Studies on the mechanism of membrane fusion: kinetics of calcium ion induced fusion of phosphatidylserine vesicles followed by a new assay for mixing of aqueous vesicle contents. Biochemistry. 1980 Dec 23;19(26):6011–6021. doi: 10.1021/bi00567a011. [DOI] [PubMed] [Google Scholar]
  51. Wilschut J., Düzgüneş N., Hoekstra D., Papahadjopoulos D. Modulation of membrane fusion by membrane fluidity: temperature dependence of divalent cation induced fusion of phosphatidylserine vesicles. Biochemistry. 1985 Jan 1;24(1):8–14. doi: 10.1021/bi00322a002. [DOI] [PubMed] [Google Scholar]
  52. Woodman P. G. The roles of NSF, SNAPs and SNAREs during membrane fusion. Biochim Biophys Acta. 1997 Jun 27;1357(2):155–172. doi: 10.1016/s0167-4889(97)00039-6. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES