Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Jan;76(1 Pt 1):387–399. doi: 10.1016/S0006-3495(99)77205-X

Studies of phospholipid hydration by high-resolution magic-angle spinning nuclear magnetic resonance.

Z Zhou 1, B G Sayer 1, D W Hughes 1, R E Stark 1, R M Epand 1
PMCID: PMC1302527  PMID: 9876150

Abstract

A sample preparation method using spherical glass ampoules has been used to achieve 1.5-Hz resolution in 1H magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of aqueous multilamellar dispersions of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), serving to differentiate between slowly exchanging interlamellar and bulk water and to reveal new molecular-level information about hydration phenomena in these model biological membranes. The average numbers of interlamellar water molecules in multilamellar vesicles (MLVs) of DOPC and POPC were found to be 37.5 +/- 1 and 37.2 +/- 1, respectively, at a spinning speed of 3 kHz. Even at speeds as high as 9 kHz, the number of interlamellar waters remained as high as 31, arguing against dehydration effects for DOPC and POPC. Both homonuclear and heteronuclear nuclear Overhauser enhancement spectroscopy (NOESY and HOESY) were used to establish the location of water near the headgroup of a PC bilayer. 1H NMR comparisons of DOPC with a lipid that can hydrogen bond (monomethyldioleoylphosphatidylethanolamine, MeDOPE) showed the following trends: 1) the interlamellar water resonance was shifted to lower frequency for DOPC but to higher frequency for MeDOPE, 2) the chemical shift variation with temperature for interlamellar water was less than that of bulk water for MeDOPE MLVs, 3) water exchange between the two lipids was rapid on the NMR time scale if they were mixed in the same bilayer, 4) water exchange was slow if they were present in separate MLVs, and 5) exchange between bulk and interlamellar water was found by two-dimensional exchange experiments to be slow, and the exchange rate should be less than 157 Hz. These results illustrate the utility of ultra-high-resolution 1H MAS NMR for determining the nature and extent of lipid hydration as well as the arrangement of nuclei at the membrane/water interface.

Full Text

The Full Text of this article is available as a PDF (160.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bach D., Miller I. R. Hydration of phospholipid bilayers in the presence and absence of cholesterol. Biochim Biophys Acta. 1998 Jan 19;1368(2):216–224. doi: 10.1016/s0005-2736(97)00179-x. [DOI] [PubMed] [Google Scholar]
  2. Bechinger B., Seelig J. Conformational changes of the phosphatidylcholine headgroup due to membrane dehydration. A 2H-NMR study. Chem Phys Lipids. 1991 May-Jun;58(1-2):1–5. doi: 10.1016/0009-3084(91)90105-k. [DOI] [PubMed] [Google Scholar]
  3. Brauer M., Sykes B. D. Phosphorus-31 nuclear magnetic resonance studies of adenosine 5'-triphosphate bound to a nitrated derivative of G-actin. Biochemistry. 1981 Nov 24;20(24):6767–6775. doi: 10.1021/bi00527a005. [DOI] [PubMed] [Google Scholar]
  4. Chen Z. J., Stark R. E. Evaluating spin diffusion in MAS-NOESY spectra of phospholipid multibilayers. Solid State Nucl Magn Reson. 1996 Dec;7(3):239–246. doi: 10.1016/s0926-2040(96)01237-4. [DOI] [PubMed] [Google Scholar]
  5. Chen Z. J., Van Gorkom L. C., Epand R. M., Stark R. E. Nuclear magnetic resonance studies of lipid hydration in monomethyldioleoylphosphatidylethanolamine dispersions. Biophys J. 1996 Mar;70(3):1412–1418. doi: 10.1016/S0006-3495(96)79700-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cistola D. P., Hall K. B. Probing internal water molecules in proteins using two-dimensional 19F-1H NMR. J Biomol NMR. 1995 Jun;5(4):415–419. doi: 10.1007/BF00182285. [DOI] [PubMed] [Google Scholar]
  7. Feller S. E., Yin D., Pastor R. W., MacKerell A. D., Jr Molecular dynamics simulation of unsaturated lipid bilayers at low hydration: parameterization and comparison with diffraction studies. Biophys J. 1997 Nov;73(5):2269–2279. doi: 10.1016/S0006-3495(97)78259-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Finer E. G., Darke A. Phospholipid hydration studied by deuteron magnetic resonace spectroscopy. Chem Phys Lipids. 1974 Feb;12(1):1–16. doi: 10.1016/0009-3084(74)90064-4. [DOI] [PubMed] [Google Scholar]
  9. Fookson J. E., Wallach D. F. Structural differences among phosphatidylcholine, phosphatidylethanolamine, and mixed phosphatidylcholine/phosphatidylethanolamine multilayers: an infrared absorption study. Arch Biochem Biophys. 1978 Jul;189(1):195–204. doi: 10.1016/0003-9861(78)90132-7. [DOI] [PubMed] [Google Scholar]
  10. Gawrisch K., Ruston D., Zimmerberg J., Parsegian V. A., Rand R. P., Fuller N. Membrane dipole potentials, hydration forces, and the ordering of water at membrane surfaces. Biophys J. 1992 May;61(5):1213–1223. doi: 10.1016/S0006-3495(92)81931-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Halladay H. N., Stark R. E., Ali S., Bittman R. Magic-angle spinning NMR studies of molecular organization in multibilayers formed by 1-octadecanoyl-2-decanoyl-sn-glycero-3-phosphocholine. Biophys J. 1990 Dec;58(6):1449–1461. doi: 10.1016/S0006-3495(90)82490-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Holte L. L., Gawrisch K. Determining ethanol distribution in phospholipid multilayers with MAS-NOESY spectra. Biochemistry. 1997 Apr 15;36(15):4669–4674. doi: 10.1021/bi9626416. [DOI] [PubMed] [Google Scholar]
  13. Humpfer E., Spraul M., Nicholls A. W., Nicholson J. K., Lindon J. C. Direct observation of resolved intracellular and extracellular water signals in intact human red blood cells using 1H MAS NMR spectroscopy. Magn Reson Med. 1997 Aug;38(2):334–336. doi: 10.1002/mrm.1910380224. [DOI] [PubMed] [Google Scholar]
  14. Jendrasiak G. L., Smith R. L., Shaw W. The water adsorption characteristics of charged phospholipids. Biochim Biophys Acta. 1996 Feb 21;1279(1):63–69. doi: 10.1016/0005-2736(95)00244-8. [DOI] [PubMed] [Google Scholar]
  15. Kodama M., Aoki H., Takahashi H., Hatta I. Interlamellar waters in dimyristoylphosphatidylethanolamine-water system as studied by calorimetry and X-ray diffraction. Biochim Biophys Acta. 1997 Oct 2;1329(1):61–73. doi: 10.1016/s0005-2736(97)00086-2. [DOI] [PubMed] [Google Scholar]
  16. Li K. L., Tihal C. A., Guo M., Stark R. E. Multinuclear and magic-angle spinning NMR investigations of molecular organization in phospholipid-triglyceride aqueous dispersions. Biochemistry. 1993 Sep 28;32(38):9926–9935. doi: 10.1021/bi00089a008. [DOI] [PubMed] [Google Scholar]
  17. Lundberg B., Svens E., Ekman S. The hydration of phospholipids and phospholipid-cholesterol complexes. Chem Phys Lipids. 1978 Nov;22(4):285–292. doi: 10.1016/0009-3084(78)90017-8. [DOI] [PubMed] [Google Scholar]
  18. McIntosh T. J., Simon S. A. Contributions of hydration and steric (entropic) pressures to the interactions between phosphatidylcholine bilayers: experiments with the subgel phase. Biochemistry. 1993 Aug 17;32(32):8374–8384. doi: 10.1021/bi00083a042. [DOI] [PubMed] [Google Scholar]
  19. Sjölund M., Lindblom G., Rilfors L., Arvidson G. Hydrophobic molecules in lecithin-water systems. I. Formation of reversed hexagonal phases at high and low water contents. Biophys J. 1987 Aug;52(2):145–153. doi: 10.1016/S0006-3495(87)83202-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tieleman D. P., Marrink S. J., Berendsen H. J. A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems. Biochim Biophys Acta. 1997 Nov 21;1331(3):235–270. doi: 10.1016/s0304-4157(97)00008-7. [DOI] [PubMed] [Google Scholar]
  21. Ulmius J., Wennerström H., Lindblom G., Arvidson G. Deuteron nuclear magnetic resonance studies of phase equilibria in a lecithin-water system. Biochemistry. 1977 Dec 27;16(26):5742–5745. doi: 10.1021/bi00645a014. [DOI] [PubMed] [Google Scholar]
  22. Ulrich A. S., Sami M., Watts A. Hydration of DOPC bilayers by differential scanning calorimetry. Biochim Biophys Acta. 1994 Apr 20;1191(1):225–230. doi: 10.1016/0005-2736(94)90253-4. [DOI] [PubMed] [Google Scholar]
  23. Ulrich A. S., Watts A. Molecular response of the lipid headgroup to bilayer hydration monitored by 2H-NMR. Biophys J. 1994 May;66(5):1441–1449. doi: 10.1016/S0006-3495(94)80934-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Volke F., Eisenblätter S., Galle J., Klose G. Dynamic properties of water at phosphatidylcholine lipid-bilayer surfaces as seen by deuterium and pulsed field gradient proton NMR. Chem Phys Lipids. 1994 Apr 19;70(2):121–131. doi: 10.1016/0009-3084(94)90080-9. [DOI] [PubMed] [Google Scholar]
  25. Volke F., Pampel A. Membrane hydration and structure on a subnanometer scale as seen by high resolution solid state nuclear magnetic resonance: POPC and POPC/C12EO4 model membranes. Biophys J. 1995 May;68(5):1960–1965. doi: 10.1016/S0006-3495(95)80373-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Walter W. V., Hayes R. G. Nuclear magnetic resonance studies of the interaction of water with the polar region of phosphatidylcholine micelles in benzene. Biochim Biophys Acta. 1971 Dec 3;249(2):528–538. doi: 10.1016/0005-2736(71)90128-3. [DOI] [PubMed] [Google Scholar]
  27. Xu Z. C., Cafiso D. S. Phospholipid packing and conformation in small vesicles revealed by two-dimensional 1H nuclear magnetic resonance cross-relaxation spectroscopy. Biophys J. 1986 Mar;49(3):779–783. doi: 10.1016/S0006-3495(86)83705-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Zaccai G., Blasie J. K., Schoenborn B. P. Neutron diffraction studies on the location of water in lecithin bilayer model membranes. Proc Natl Acad Sci U S A. 1975 Jan;72(1):376–380. doi: 10.1073/pnas.72.1.376. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES