Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Jan;76(1 Pt 1):400–408. doi: 10.1016/S0006-3495(99)77206-1

Mutations in the N- and D-helices of the N-domain of troponin C affect the C-domain and regulatory function.

L Smith 1, N J Greenfield 1, S E Hitchcock-DeGregori 1
PMCID: PMC1302528  PMID: 9876151

Abstract

Troponin C contains a 14-residue alpha-helix at the amino terminus, the N-helix, that calmodulin lacks. Deletion of the first 11-14 residues of troponin C alters function. In the present investigation a mutant lacking residues 1-7 of the N-helix has normal conformation, Ca2+ binding, and regulatory function. Thus, residues 8-14 of the N-helix are generally sufficient for troponin C function. In the x-ray structures of troponin C there is a salt bridge between Arg 11 in the N-helix and Glu 76 in the D-helix. Destroying the salt bridge by individually mutating the residues to Cys has no effect on function. However, mutation of both residues to Cys reduces troponin C's affinity for the troponin complex on the thin filament, reduces the stability of the N-domain in the absence of divalent cations, increases the Ca2+ affinity and reduces the cooperativity of the Ca2+Mg2+ sites in the C-domain, and alters the conformational change that takes place upon Ca2+ binding (but not Mg2+ binding) to the C-domain. Cross-linking with bis-(maleimidomethylether) partially restores function. The Ca2+-specific sites in the N-domain, those closest to the sites of the mutations, are unaffected in the assays employed. These results show that the N-helix is a critical structural element for interaction with and activation of the thin filament. Moreover, mutations in the N-helix affect the C-terminal domain, consistent with recent structural studies showing that the N-helix and C-terminal domain are physically close.

Full Text

The Full Text of this article is available as a PDF (110.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Babu Y. S., Bugg C. E., Cook W. J. Structure of calmodulin refined at 2.2 A resolution. J Mol Biol. 1988 Nov 5;204(1):191–204. doi: 10.1016/0022-2836(88)90608-0. [DOI] [PubMed] [Google Scholar]
  2. Chandra M., da Silva E. F., Sorenson M. M., Ferro J. A., Pearlstone J. R., Nash B. E., Borgford T., Kay C. M., Smillie L. B. The effects of N helix deletion and mutant F29W on the Ca2+ binding and functional properties of chicken skeletal muscle troponin. J Biol Chem. 1994 May 27;269(21):14988–14994. [PubMed] [Google Scholar]
  3. Collins J. H. Myosin light chains and troponin C: structural and evolutionary relationships revealed by amino acid sequence comparisons. J Muscle Res Cell Motil. 1991 Feb;12(1):3–25. doi: 10.1007/BF01781170. [DOI] [PubMed] [Google Scholar]
  4. Dobrowolski Z., Xu G. Q., Hitchcock-DeGregori S. E. Modified calcium-dependent regulatory function of troponin C central helix mutants. J Biol Chem. 1991 Mar 25;266(9):5703–5710. [PubMed] [Google Scholar]
  5. Farah C. S., Miyamoto C. A., Ramos C. H., da Silva A. C., Quaggio R. B., Fujimori K., Smillie L. B., Reinach F. C. Structural and regulatory functions of the NH2- and COOH-terminal regions of skeletal muscle troponin I. J Biol Chem. 1994 Feb 18;269(7):5230–5240. [PubMed] [Google Scholar]
  6. Farah C. S., Reinach F. C. The troponin complex and regulation of muscle contraction. FASEB J. 1995 Jun;9(9):755–767. doi: 10.1096/fasebj.9.9.7601340. [DOI] [PubMed] [Google Scholar]
  7. François J. M., Sedarous S. S., Gerday C. Ca(2+)-induced conformational shift of the COOH-domain of eel skeletal muscle troponin C in the presence of physiological concentrations of Mg2+. J Muscle Res Cell Motil. 1997 Jun;18(3):323–334. doi: 10.1023/a:1018622109391. [DOI] [PubMed] [Google Scholar]
  8. Fredricksen R. S., Swenson C. A. Relationship between stability and function for isolated domains of troponin C. Biochemistry. 1996 Nov 5;35(44):14012–14026. doi: 10.1021/bi961270q. [DOI] [PubMed] [Google Scholar]
  9. GOA J. A micro biuret method for protein determination; determination of total protein in cerebrospinal fluid. Scand J Clin Lab Invest. 1953;5(3):218–222. doi: 10.3109/00365515309094189. [DOI] [PubMed] [Google Scholar]
  10. Gagné S. M., Tsuda S., Li M. X., Smillie L. B., Sykes B. D. Structures of the troponin C regulatory domains in the apo and calcium-saturated states. Nat Struct Biol. 1995 Sep;2(9):784–789. doi: 10.1038/nsb0995-784. [DOI] [PubMed] [Google Scholar]
  11. Golosinska K., Pearlstone J. R., Borgford T., Oikawa K., Kay C. M., Carpenter M. R., Smillie L. B. Determination of and corrections to sequences of turkey and chicken troponins-C. Effects of Thr-130 to Ile mutation on Ca2+ affinity. J Biol Chem. 1991 Aug 25;266(24):15797–15809. [PubMed] [Google Scholar]
  12. Grabarek Z., Tan R. Y., Wang J., Tao T., Gergely J. Inhibition of mutant troponin C activity by an intra-domain disulphide bond. Nature. 1990 May 10;345(6271):132–135. doi: 10.1038/345132a0. [DOI] [PubMed] [Google Scholar]
  13. Grabarek Z., Tao T., Gergely J. Molecular mechanism of troponin-C function. J Muscle Res Cell Motil. 1992 Aug;13(4):383–393. doi: 10.1007/BF01738034. [DOI] [PubMed] [Google Scholar]
  14. Gulati J., Akella A. B., Su H., Mehler E. L., Weinstein H. Functional role of arginine-11 in the N-terminal helix of skeletal troponin C: combined mutagenesis and molecular dynamics investigation. Biochemistry. 1995 Jun 6;34(22):7348–7355. doi: 10.1021/bi00022a007. [DOI] [PubMed] [Google Scholar]
  15. Gulati J., Babu A., Su H., Zhang Y. F. Identification of the regions conferring calmodulin-like properties to troponin C. J Biol Chem. 1993 Jun 5;268(16):11685–11690. [PubMed] [Google Scholar]
  16. Gusev N. B., Grabarek Z., Gergely J. Stabilization by a disulfide bond of the N-terminal domain of a mutant troponin C (TnC48/82). J Biol Chem. 1991 Sep 5;266(25):16622–16626. [PubMed] [Google Scholar]
  17. Head J. F., Perry S. V. The interaction of the calcium-binding protein (troponin C) with bivalent cations and the inhibitory protein (troponin I). Biochem J. 1974 Feb;137(2):145–154. doi: 10.1042/bj1370145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Herzberg O., James M. N. Refined crystal structure of troponin C from turkey skeletal muscle at 2.0 A resolution. J Mol Biol. 1988 Oct 5;203(3):761–779. doi: 10.1016/0022-2836(88)90208-2. [DOI] [PubMed] [Google Scholar]
  19. Herzberg O., Moult J., James M. N. A model for the Ca2+-induced conformational transition of troponin C. A trigger for muscle contraction. J Biol Chem. 1986 Feb 25;261(6):2638–2644. [PubMed] [Google Scholar]
  20. Hincke M. T., McCubbin W. D., Kay C. M. Calcium-binding properties of cardiac and skeletal troponin C as determined by circular dichroism and ultraviolet difference spectroscopy. Can J Biochem. 1978 Jun;56(6):384–395. doi: 10.1139/o78-061. [DOI] [PubMed] [Google Scholar]
  21. Hitchcock-De Gregori S. E., Mandala S., Sachs G. A. Changes in actin lysine reactivities during polymerization detected using a competitive labeling method. J Biol Chem. 1982 Nov 10;257(21):12573–12580. [PubMed] [Google Scholar]
  22. Hitchcock-DeGregori S. E., Lewis S. F., Chou T. M. Tropomyosin lysine reactivities and relationship to coiled-coil structure. Biochemistry. 1985 Jun 18;24(13):3305–3314. doi: 10.1021/bi00334a035. [DOI] [PubMed] [Google Scholar]
  23. Hitchcock S. E., Zimmerman C. J., Smalley C. Study of the structure of troponin-T by measuring the relative reactivities of lysines with acetic anhydride. J Mol Biol. 1981 Mar 25;147(1):125–151. doi: 10.1016/0022-2836(81)90082-6. [DOI] [PubMed] [Google Scholar]
  24. Houdusse A., Love M. L., Dominguez R., Grabarek Z., Cohen C. Structures of four Ca2+-bound troponin C at 2.0 A resolution: further insights into the Ca2+-switch in the calmodulin superfamily. Structure. 1997 Dec 15;5(12):1695–1711. doi: 10.1016/s0969-2126(97)00315-8. [DOI] [PubMed] [Google Scholar]
  25. Kobayashi T., Tao T., Gergely J., Collins J. H. Structure of the troponin complex. Implications of photocross-linking of troponin I to troponin C thiol mutants. J Biol Chem. 1994 Feb 25;269(8):5725–5729. [PubMed] [Google Scholar]
  26. Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Leavis P. C., Rosenfeld S. S., Gergely J., Grabarek Z., Drabikowski W. Proteolytic fragments of troponin C. Localization of high and low affinity Ca2+ binding sites and interactions with troponin I and troponin T. J Biol Chem. 1978 Aug 10;253(15):5452–5459. [PubMed] [Google Scholar]
  28. Levine B. A., Thornton J. M., Fernandes R., Kelly C. M., Mercola D. Comparison of the calcium- and magnesium-induced structural changes of troponin--C. A proton magnetic resonance study. Biochim Biophys Acta. 1978 Jul 21;535(1):11–24. doi: 10.1016/0005-2795(78)90028-4. [DOI] [PubMed] [Google Scholar]
  29. Liu W., Dotson D. G., Lin X., Mullen J. J., 3rd, Gonzalez-Garay M. L., Lu Q., Putkey J. A. The presence but not the sequence of the N-terminal peptide in cardiac TnC is important for function. FEBS Lett. 1994 Jun 27;347(2-3):152–156. doi: 10.1016/0014-5793(94)00526-5. [DOI] [PubMed] [Google Scholar]
  30. Luo Y., Wu J. L., Gergely J., Tao T. Localization of Cys133 of rabbit skeletal troponin-I with respect to troponin-C by resonance energy transfer. Biophys J. 1998 Jun;74(6):3111–3119. doi: 10.1016/S0006-3495(98)78017-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Margossian S. S., Lowey S. Preparation of myosin and its subfragments from rabbit skeletal muscle. Methods Enzymol. 1982;85(Pt B):55–71. doi: 10.1016/0076-6879(82)85009-x. [DOI] [PubMed] [Google Scholar]
  32. McKay R. T., Pearlstone J. R., Corson D. C., Gagné S. M., Smillie L. B., Sykes B. D. Structure and interaction site of the regulatory domain of troponin-C when complexed with the 96-148 region of troponin-I. Biochemistry. 1998 Sep 8;37(36):12419–12430. doi: 10.1021/bi9809019. [DOI] [PubMed] [Google Scholar]
  33. Park H. S., Gong B. J., Tao T. A disulfide crosslink between Cys98 of troponin-C and Cys133 of troponin-I abolishes the activity of rabbit skeletal troponin. Biophys J. 1994 Jun;66(6):2062–2065. doi: 10.1016/S0006-3495(94)81000-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Pearlstone J. R., Borgford T., Chandra M., Oikawa K., Kay C. M., Herzberg O., Moult J., Herklotz A., Reinach F. C., Smillie L. B. Construction and characterization of a spectral probe mutant of troponin C: application to analyses of mutants with increased Ca2+ affinity. Biochemistry. 1992 Jul 21;31(28):6545–6553. doi: 10.1021/bi00143a026. [DOI] [PubMed] [Google Scholar]
  35. Persechini A., Kretsinger R. H. The central helix of calmodulin functions as a flexible tether. J Biol Chem. 1988 Sep 5;263(25):12175–12178. [PubMed] [Google Scholar]
  36. Potter J. D. Preparation of troponin and its subunits. Methods Enzymol. 1982;85(Pt B):241–263. doi: 10.1016/0076-6879(82)85024-6. [DOI] [PubMed] [Google Scholar]
  37. Putkey J. A., Carroll S. L., Means A. R. The nontranscribed chicken calmodulin pseudogene cross-hybridizes with mRNA from the slow-muscle troponin C gene. Mol Cell Biol. 1987 Apr;7(4):1549–1553. doi: 10.1128/mcb.7.4.1549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Satyshur K. A., Pyzalska D., Greaser M., Rao S. T., Sundaralingam M. Structure of chicken skeletal muscle troponin C at 1.78 A resolution. Acta Crystallogr D Biol Crystallogr. 1994 Jan 1;50(Pt 1):40–49. doi: 10.1107/S090744499300798X. [DOI] [PubMed] [Google Scholar]
  40. Satyshur K. A., Rao S. T., Pyzalska D., Drendel W., Greaser M., Sundaralingam M. Refined structure of chicken skeletal muscle troponin C in the two-calcium state at 2-A resolution. J Biol Chem. 1988 Feb 5;263(4):1628–1647. [PubMed] [Google Scholar]
  41. Seamon K. B., Hartshorne D. J., Bothner-By A. A. Ca2+ and Mg2+ dependent conformations of troponin C as determined by 1H and 19F nuclear magnetic resonance. Biochemistry. 1977 Sep 6;16(18):4039–4046. doi: 10.1021/bi00637a016. [DOI] [PubMed] [Google Scholar]
  42. Sia S. K., Li M. X., Spyracopoulos L., Gagné S. M., Liu W., Putkey J. A., Sykes B. D. Structure of cardiac muscle troponin C unexpectedly reveals a closed regulatory domain. J Biol Chem. 1997 Jul 18;272(29):18216–18221. doi: 10.1074/jbc.272.29.18216. [DOI] [PubMed] [Google Scholar]
  43. Slupsky C. M., Sykes B. D. NMR solution structure of calcium-saturated skeletal muscle troponin C. Biochemistry. 1995 Dec 12;34(49):15953–15964. doi: 10.1021/bi00049a010. [DOI] [PubMed] [Google Scholar]
  44. Smith L., Greenfield N. J., Hitchcock-DeGregori S. E. The effects of deletion of the amino-terminal helix on troponin C function and stability. J Biol Chem. 1994 Apr 1;269(13):9857–9863. [PubMed] [Google Scholar]
  45. Squire J. M., Morris E. P. A new look at thin filament regulation in vertebrate skeletal muscle. FASEB J. 1998 Jul;12(10):761–771. doi: 10.1096/fasebj.12.10.761. [DOI] [PubMed] [Google Scholar]
  46. Strynadka N. C., Cherney M., Sielecki A. R., Li M. X., Smillie L. B., James M. N. Structural details of a calcium-induced molecular switch: X-ray crystallographic analysis of the calcium-saturated N-terminal domain of troponin C at 1.75 A resolution. J Mol Biol. 1997 Oct 17;273(1):238–255. doi: 10.1006/jmbi.1997.1257. [DOI] [PubMed] [Google Scholar]
  47. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. doi: 10.1016/0076-6879(90)85008-c. [DOI] [PubMed] [Google Scholar]
  48. Tobacman L. S. Thin filament-mediated regulation of cardiac contraction. Annu Rev Physiol. 1996;58:447–481. doi: 10.1146/annurev.ph.58.030196.002311. [DOI] [PubMed] [Google Scholar]
  49. Trigo-Gonzalez G., Racher K., Burtnick L., Borgford T. A comparative spectroscopic study of tryptophan probes engineered into high- and low-affinity domains of recombinant chicken troponin C. Biochemistry. 1992 Aug 11;31(31):7009–7015. doi: 10.1021/bi00146a001. [DOI] [PubMed] [Google Scholar]
  50. Tripet B., Van Eyk J. E., Hodges R. S. Mapping of a second actin-tropomyosin and a second troponin C binding site within the C terminus of troponin I, and their importance in the Ca2+-dependent regulation of muscle contraction. J Mol Biol. 1997 Sep 5;271(5):728–750. doi: 10.1006/jmbi.1997.1200. [DOI] [PubMed] [Google Scholar]
  51. Vassylyev D. G., Takeda S., Wakatsuki S., Maeda K., Maéda Y. Crystal structure of troponin C in complex with troponin I fragment at 2.3-A resolution. Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):4847–4852. doi: 10.1073/pnas.95.9.4847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. White H. D. Special instrumentation and techniques for kinetic studies of contractile systems. Methods Enzymol. 1982;85(Pt B):698–708. doi: 10.1016/0076-6879(82)85057-x. [DOI] [PubMed] [Google Scholar]
  53. Xu G. Q., Hitchcock-DeGregori S. E. Synthesis of a troponin C cDNA and expression of wild-type and mutant proteins in Escherichia coli. J Biol Chem. 1988 Sep 25;263(27):13962–13969. [PubMed] [Google Scholar]
  54. Zoller M. J., Smith M. Oligonucleotide-directed mutagenesis of DNA fragments cloned into M13 vectors. Methods Enzymol. 1983;100:468–500. doi: 10.1016/0076-6879(83)00074-9. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES