Abstract
The Mössbauer effect of 57Fe-enriched samples was used to investigate the coupling of 80% sucrose/water, a protein-stabilizing solvent, to vibrational and diffusive modes of the heme iron of CO-myoglobin. For comparison we also determined the Mössbauer spectra of K4 57Fe (CN)6 (potassium ferrocyanide, PFC), where the iron is fully exposed in the same solvent. The temperature dependence of the Mössbauer parameters derived for the two samples proved to be remarkably similar, indicative of a strong coupling of the main heme displacements to the viscoelastic relaxation of the solvent. We show that CO escape out of the heme pocket couples to the same type of fluctuations, whereas intramolecular bond formation involves solvent-decoupled heme deformation modes that are less prominent in the Mössbauer spectrum. With respect to other solvents, however, sucrose shows a reduced viscosity effect on heme displacements and the kinetics of ligand binding due to preferential hydration of the protein. This result confirms thermodynamic predictions of the stabilizing action of sucrose by a dynamic method.
Full Text
The Full Text of this article is available as a PDF (119.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ansari A., Jones C. M., Henry E. R., Hofrichter J., Eaton W. A. Conformational relaxation and ligand binding in myoglobin. Biochemistry. 1994 May 3;33(17):5128–5145. doi: 10.1021/bi00183a017. [DOI] [PubMed] [Google Scholar]
- Ansari A., Jones C. M., Henry E. R., Hofrichter J., Eaton W. A. The role of solvent viscosity in the dynamics of protein conformational changes. Science. 1992 Jun 26;256(5065):1796–1798. doi: 10.1126/science.1615323. [DOI] [PubMed] [Google Scholar]
- Austin R. H., Beeson K. W., Eisenstein L., Frauenfelder H., Gunsalus I. C. Dynamics of ligand binding to myoglobin. Biochemistry. 1975 Dec 2;14(24):5355–5373. doi: 10.1021/bi00695a021. [DOI] [PubMed] [Google Scholar]
- Beece D., Eisenstein L., Frauenfelder H., Good D., Marden M. C., Reinisch L., Reynolds A. H., Sorensen L. B., Yue K. T. Solvent viscosity and protein dynamics. Biochemistry. 1980 Nov 11;19(23):5147–5157. doi: 10.1021/bi00564a001. [DOI] [PubMed] [Google Scholar]
- Carpenter J. F., Crowe J. H. An infrared spectroscopic study of the interactions of carbohydrates with dried proteins. Biochemistry. 1989 May 2;28(9):3916–3922. doi: 10.1021/bi00435a044. [DOI] [PubMed] [Google Scholar]
- Carpenter J. F., Crowe J. H. The mechanism of cryoprotection of proteins by solutes. Cryobiology. 1988 Jun;25(3):244–255. doi: 10.1016/0011-2240(88)90032-6. [DOI] [PubMed] [Google Scholar]
- Crowe L. M., Reid D. S., Crowe J. H. Is trehalose special for preserving dry biomaterials? Biophys J. 1996 Oct;71(4):2087–2093. doi: 10.1016/S0006-3495(96)79407-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Demmel F., Doster W., Petry W., Schulte A. Vibrational frequency shifts as a probe of hydrogen bonds: thermal expansion and glass transition of myoglobin in mixed solvents. Eur Biophys J. 1997;26(4):327–335. doi: 10.1007/s002490050087. [DOI] [PubMed] [Google Scholar]
- Diehl M., Doster W., Petry W., Schober H. Water-coupled low-frequency modes of myoglobin and lysozyme observed by inelastic neutron scattering. Biophys J. 1997 Nov;73(5):2726–2732. doi: 10.1016/S0006-3495(97)78301-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doster W., Cusack S., Petry W. Dynamical transition of myoglobin revealed by inelastic neutron scattering. Nature. 1989 Feb 23;337(6209):754–756. doi: 10.1038/337754a0. [DOI] [PubMed] [Google Scholar]
- Frauenfelder H., Parak F., Young R. D. Conformational substates in proteins. Annu Rev Biophys Biophys Chem. 1988;17:451–479. doi: 10.1146/annurev.bb.17.060188.002315. [DOI] [PubMed] [Google Scholar]
- Frauenfelder H., Sligar S. G., Wolynes P. G. The energy landscapes and motions of proteins. Science. 1991 Dec 13;254(5038):1598–1603. doi: 10.1126/science.1749933. [DOI] [PubMed] [Google Scholar]
- Hagen S. J., Hofrichter J., Eaton W. A. Protein reaction kinetics in a room-temperature glass. Science. 1995 Aug 18;269(5226):959–962. doi: 10.1126/science.7638618. [DOI] [PubMed] [Google Scholar]
- Johnson J. B., Lamb D. C., Frauenfelder H., Müller J. D., McMahon B., Nienhaus G. U., Young R. D. Ligand binding to heme proteins. VI. Interconversion of taxonomic substates in carbonmonoxymyoglobin. Biophys J. 1996 Sep;71(3):1563–1573. doi: 10.1016/S0006-3495(96)79359-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kleinert T., Doster W., Leyser H., Petry W., Schwarz V., Settles M. Solvent composition and viscosity effects on the kinetics of CO binding to horse myoglobin. Biochemistry. 1998 Jan 13;37(2):717–733. doi: 10.1021/bi971508q. [DOI] [PubMed] [Google Scholar]
- Kuczera K., Kuriyan J., Karplus M. Temperature dependence of the structure and dynamics of myoglobin. A simulation approach. J Mol Biol. 1990 May 20;213(2):351–373. doi: 10.1016/S0022-2836(05)80196-2. [DOI] [PubMed] [Google Scholar]
- Lin T. Y., Timasheff S. N. On the role of surface tension in the stabilization of globular proteins. Protein Sci. 1996 Feb;5(2):372–381. doi: 10.1002/pro.5560050222. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Melchers B., Knapp E. W., Parak F., Cordone L., Cupane A., Leone M. Structural fluctuations of myoglobin from normal-modes, Mössbauer, Raman, and absorption spectroscopy. Biophys J. 1996 May;70(5):2092–2099. doi: 10.1016/S0006-3495(96)79775-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nadler W., Schulten K. Theory of Mössbauer spectra of proteins fluctuating between conformational substates. Proc Natl Acad Sci U S A. 1984 Sep;81(18):5719–5723. doi: 10.1073/pnas.81.18.5719. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nienhaus GU, Frauenfelder H, Parak F. Structural fluctuations in glass-forming liquids: Mössbauer spectroscopy on iron in glycerol. Phys Rev B Condens Matter. 1991 Feb 1;43(4):3345–3350. doi: 10.1103/physrevb.43.3345. [DOI] [PubMed] [Google Scholar]
- Parak F., Frolov E. N., Mössbauer R. L., Goldanskii V. I. Dynamics of metmyoglobin crystals investigated by nuclear gamma resonance absorption. J Mol Biol. 1981 Feb 5;145(4):825–833. doi: 10.1016/0022-2836(81)90317-x. [DOI] [PubMed] [Google Scholar]
- Parak F., Knapp E. W., Kucheida D. Protein dynamics. Mössbauer spectroscopy on deoxymyoglobin crystals. J Mol Biol. 1982 Oct 15;161(1):177–194. doi: 10.1016/0022-2836(82)90285-6. [DOI] [PubMed] [Google Scholar]
- Perutz M. F. Myoglobin and haemoglobin: role of distal residues in reactions with haem ligands. Trends Biochem Sci. 1989 Feb;14(2):42–44. doi: 10.1016/0968-0004(89)90039-x. [DOI] [PubMed] [Google Scholar]
- Post F., Doster W., Karvounis G., Settles M. Structural relaxation and nonexponential kinetics of CO-binding to horse myoglobin. Multiple flash photolysis experiments. Biophys J. 1993 Jun;64(6):1833–1842. doi: 10.1016/S0006-3495(93)81554-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reinisch L., Heidemeier J., Parak F. Determination of the second order doppler shift of iron in myoglobin by Mössbauer spectroscopy. Eur Biophys J. 1985;12(3):167–172. doi: 10.1007/BF00254075. [DOI] [PubMed] [Google Scholar]
- Sastry G. M., Agmon N. Trehalose prevents myoglobin collapse and preserves its internal mobility. Biochemistry. 1997 Jun 10;36(23):7097–7108. doi: 10.1021/bi9626057. [DOI] [PubMed] [Google Scholar]
- Sokolov AP, Hurst J, Quitmann D. Dynamics of supercooled water: Mode-coupling theory approach. Phys Rev B Condens Matter. 1995 May 1;51(18):12865–12868. doi: 10.1103/physrevb.51.12865. [DOI] [PubMed] [Google Scholar]
- Srajer V, V, Schomacker KT, Champion PM. Spectral broadening in biomolecules. Phys Rev Lett. 1986 Sep 8;57(10):1267–1270. doi: 10.1103/PhysRevLett.57.1267. [DOI] [PubMed] [Google Scholar]
- Timasheff S. N. The control of protein stability and association by weak interactions with water: how do solvents affect these processes? Annu Rev Biophys Biomol Struct. 1993;22:67–97. doi: 10.1146/annurev.bb.22.060193.000435. [DOI] [PubMed] [Google Scholar]
- Trautwein A., Eicher H., Mayer A. Electronic structure, quadrupole splitting, chemical shift, and susceptibility of ferrous iron in anhydrohemoglobin, anhydromyoglobin, and bispyridinehemin. J Chem Phys. 1970 Mar 1;52(5):2473–2477. doi: 10.1063/1.1673330. [DOI] [PubMed] [Google Scholar]
- Tsubaki M., Srivastava R. B., Yu N. T. Resonance Raman investigation of carbon monoxide bonding in (carbon monoxy)hemoglobin and -myoglobin: detection of Fe-CO stretching and Fe-C-O bending vibrations and influence of the quaternary structure change. Biochemistry. 1982 Mar 16;21(6):1132–1140. doi: 10.1021/bi00535a004. [DOI] [PubMed] [Google Scholar]
- Yancey P. H., Clark M. E., Hand S. C., Bowlus R. D., Somero G. N. Living with water stress: evolution of osmolyte systems. Science. 1982 Sep 24;217(4566):1214–1222. doi: 10.1126/science.7112124. [DOI] [PubMed] [Google Scholar]