Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Jan;76(1 Pt 1):469–477. doi: 10.1016/S0006-3495(99)77214-0

Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives.

R C Scaduto Jr 1, L W Grotyohann 1
PMCID: PMC1302536  PMID: 9876159

Abstract

We investigated the use of rhodamine 123 (R123), tetramethylrhodamine methyl ester (TMRM), and tetramethylrhodamine ethyl ester (TMRE) as fluorescent probes to monitor the membrane potential of mitochondria. These indicator dyes are lipophilic cations accumulated by mitochondria in proportion to DeltaPsi. Upon accumulation, all three dyes exhibit a red shift in both their absorption and fluorescence emission spectra. The fluorescence intensity is quenched when the dyes are accumulated by mitochondria. These properties have been used to develop a method to dynamically monitor DeltaPsi of isolated rat heart mitochondria using a ratio fluorescence approach. All three dyes bound to the inner and outer aspects of the inner mitochondrial membrane and, as a result, were accumulated by mitochondria in a greater quantity than predicted by the Nernst equation. Binding to mitochondria was temperature-dependent and the degree of binding was in the order of TMRE > R123 > TMRM. The internal and external partition coefficients for binding were determined to correct for binding in the calculation of DeltaPsi. All three dyes suppressed mitochondrial respiratory control to some extent. Inhibition of respiration was greatest with TMRE, followed by R123 and TMRM. When used at low concentrations, TMRM did not suppress respiration. The use of these dyes and ratio fluorescence techniques affords a simple method for measurement of DeltaPsi of isolated mitochondria. We also applied this approach to the isolated perfused heart to determine whether DeltaPsi could be monitored in an intact tissue. Wavelength scanning of the surface fluorescence of the heart under various conditions after accumulation of TMRM indicated that the mitochondrial matrix-induced wavelength shift of TMRM also occurs in the heart cytosol, eliminating the use of this approach in the intact heart.

Full Text

The Full Text of this article is available as a PDF (101.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akerman K. E., Wikström M. K. Safranine as a probe of the mitochondrial membrane potential. FEBS Lett. 1976 Oct 1;68(2):191–197. doi: 10.1016/0014-5793(76)80434-6. [DOI] [PubMed] [Google Scholar]
  2. Chen L. B. Mitochondrial membrane potential in living cells. Annu Rev Cell Biol. 1988;4:155–181. doi: 10.1146/annurev.cb.04.110188.001103. [DOI] [PubMed] [Google Scholar]
  3. Ehrenberg B., Montana V., Wei M. D., Wuskell J. P., Loew L. M. Membrane potential can be determined in individual cells from the nernstian distribution of cationic dyes. Biophys J. 1988 May;53(5):785–794. doi: 10.1016/S0006-3495(88)83158-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Emaus R. K., Grunwald R., Lemasters J. J. Rhodamine 123 as a probe of transmembrane potential in isolated rat-liver mitochondria: spectral and metabolic properties. Biochim Biophys Acta. 1986 Jul 23;850(3):436–448. doi: 10.1016/0005-2728(86)90112-x. [DOI] [PubMed] [Google Scholar]
  5. Farkas D. L., Wei M. D., Febbroriello P., Carson J. H., Loew L. M. Simultaneous imaging of cell and mitochondrial membrane potentials. Biophys J. 1989 Dec;56(6):1053–1069. doi: 10.1016/S0006-3495(89)82754-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ion transport in liver mitochondria. Energy barrier and stoicheometry of aerobic K+ translocation. Eur J Biochem. 1969 Jan;7(3):418–426. doi: 10.1111/j.1432-1033.1969.tb19626.x. [DOI] [PubMed] [Google Scholar]
  7. Kamo N., Muratsugu M., Hongoh R., Kobatake Y. Membrane potential of mitochondria measured with an electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state. J Membr Biol. 1979 Aug;49(2):105–121. doi: 10.1007/BF01868720. [DOI] [PubMed] [Google Scholar]
  8. LaNoue K. F., Strzelecki T., Strzelecka D., Koch C. Regulation of the uncoupling protein in brown adipose tissue. J Biol Chem. 1986 Jan 5;261(1):298–305. [PubMed] [Google Scholar]
  9. Loew L. M., Tuft R. A., Carrington W., Fay F. S. Imaging in five dimensions: time-dependent membrane potentials in individual mitochondria. Biophys J. 1993 Dec;65(6):2396–2407. doi: 10.1016/S0006-3495(93)81318-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Millot J. M., Sharonov S., Manfait M. Scanning microspectrofluorometry of rhodamine 123 in multidrug-resistant cells. Cytometry. 1994 Sep 1;17(1):50–58. doi: 10.1002/cyto.990170107. [DOI] [PubMed] [Google Scholar]
  11. Modica-Napolitano J. S., Aprille J. R. Basis for the selective cytotoxicity of rhodamine 123. Cancer Res. 1987 Aug 15;47(16):4361–4365. [PubMed] [Google Scholar]
  12. Nicholls D. G. The regulation of extramitochondrial free calcium ion concentration by rat liver mitochondria. Biochem J. 1978 Nov 15;176(2):463–474. doi: 10.1042/bj1760463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Reers M., Smith T. W., Chen L. B. J-aggregate formation of a carbocyanine as a quantitative fluorescent indicator of membrane potential. Biochemistry. 1991 May 7;30(18):4480–4486. doi: 10.1021/bi00232a015. [DOI] [PubMed] [Google Scholar]
  14. Rottenberg H. Membrane potential and surface potential in mitochondria: uptake and binding of lipophilic cations. J Membr Biol. 1984;81(2):127–138. doi: 10.1007/BF01868977. [DOI] [PubMed] [Google Scholar]
  15. Sakanoue J., Ichikawa K., Nomura Y., Tamura M. Rhodamine 800 as a probe of energization of cells and tissues in the near-infrared region: a study with isolated rat liver mitochondria and hepatocytes. J Biochem. 1997 Jan;121(1):29–37. doi: 10.1093/oxfordjournals.jbchem.a021565. [DOI] [PubMed] [Google Scholar]
  16. Salmeen I., Zacmanidis P., Jesion G., Feldkamp L. A. Motion of mitochondria in cultured cells quantified by analysis of digitized images. Biophys J. 1985 Nov;48(5):681–686. doi: 10.1016/S0006-3495(85)83825-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Scaduto R. C., Jr Calcium and 2-oxoglutarate-mediated control of aspartate formation by rat heart mitochondria. Eur J Biochem. 1994 Aug 1;223(3):751–758. doi: 10.1111/j.1432-1033.1994.tb19049.x. [DOI] [PubMed] [Google Scholar]
  18. Scott D. A., Grotyohann L. W., Cheung J. Y., Scaduto R. C., Jr Ratiometric methodology for NAD(P)H measurement in the perfused rat heart using surface fluorescence. Am J Physiol. 1994 Aug;267(2 Pt 2):H636–H644. doi: 10.1152/ajpheart.1994.267.2.H636. [DOI] [PubMed] [Google Scholar]
  19. Smith J. C. Potential-sensitive molecular probes in membranes of bioenergetic relevance. Biochim Biophys Acta. 1990 Mar 15;1016(1):1–28. doi: 10.1016/0005-2728(90)90002-l. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES