Abstract
Fatty acid binding proteins (FABPs) can discriminate between saturated and unsaturated fatty acids via molecular mechanisms that are not understood. Molecular dynamics computer calculations are used to suggest the relationship between tertiary structure and binding specificity. Three separate 1-ns simulations, with explicit solvent, are presented: 1) oleic acid (C18:1 cis) bound to adipocyte FABP, 2) oleic acid bound to human muscle FABP, and 3) elaidic acid (C18:1 trans) bound to human muscle FABP. The average structural, dynamic, and energetic properties of the trajectory were analyzed, as were the motional correlations. The molecular dynamics trajectories reveal intriguing differences among all three systems. For example, the two proteins have different strengths of interaction energy with the ligand and different motional coupling, as seen with covariance analysis. This suggests distinctive molecular behavior of monounsaturated fatty acids in the two similar proteins. An importance scale, based on motional correlation and interaction energy between protein and ligand, is proposed, to help identify amino acids involved with the discrimination of ligand saturation state or geometric isomerization.
Full Text
The Full Text of this article is available as a PDF (636.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ajay, Murcko M. A. Computational methods to predict binding free energy in ligand-receptor complexes. J Med Chem. 1995 Dec 22;38(26):4953–4967. doi: 10.1021/jm00026a001. [DOI] [PubMed] [Google Scholar]
- Amadei A., Linssen A. B., Berendsen H. J. Essential dynamics of proteins. Proteins. 1993 Dec;17(4):412–425. doi: 10.1002/prot.340170408. [DOI] [PubMed] [Google Scholar]
- Amri E. Z., Bonino F., Ailhaud G., Abumrad N. A., Grimaldi P. A. Cloning of a protein that mediates transcriptional effects of fatty acids in preadipocytes. Homology to peroxisome proliferator-activated receptors. J Biol Chem. 1995 Feb 3;270(5):2367–2371. doi: 10.1074/jbc.270.5.2367. [DOI] [PubMed] [Google Scholar]
- Aqvist J., Medina C., Samuelsson J. E. A new method for predicting binding affinity in computer-aided drug design. Protein Eng. 1994 Mar;7(3):385–391. doi: 10.1093/protein/7.3.385. [DOI] [PubMed] [Google Scholar]
- Banaszak L., Winter N., Xu Z., Bernlohr D. A., Cowan S., Jones T. A. Lipid-binding proteins: a family of fatty acid and retinoid transport proteins. Adv Protein Chem. 1994;45:89–151. doi: 10.1016/s0065-3233(08)60639-7. [DOI] [PubMed] [Google Scholar]
- Bass N. M. Cellular binding proteins for fatty acids and retinoids: similar or specialized functions? Mol Cell Biochem. 1993 Jun 9;123(1-2):191–202. doi: 10.1007/BF01076492. [DOI] [PubMed] [Google Scholar]
- Brown M. L., Venable R. M., Pastor R. W. A method for characterizing transition concertedness from polymer dynamics computer simulations. Biopolymers. 1995 Jan;35(1):31–46. doi: 10.1002/bip.360350105. [DOI] [PubMed] [Google Scholar]
- Cistola D. P., Hamilton J. A., Jackson D., Small D. M. Ionization and phase behavior of fatty acids in water: application of the Gibbs phase rule. Biochemistry. 1988 Mar 22;27(6):1881–1888. doi: 10.1021/bi00406a013. [DOI] [PubMed] [Google Scholar]
- Cistola D. P., Sacchettini J. C., Banaszak L. J., Walsh M. T., Gordon J. I. Fatty acid interactions with rat intestinal and liver fatty acid-binding proteins expressed in Escherichia coli. A comparative 13C NMR study. J Biol Chem. 1989 Feb 15;264(5):2700–2710. [PubMed] [Google Scholar]
- García AE. Large-amplitude nonlinear motions in proteins. Phys Rev Lett. 1992 Apr 27;68(17):2696–2699. doi: 10.1103/PhysRevLett.68.2696. [DOI] [PubMed] [Google Scholar]
- Gilson M. K., Given J. A., Bush B. L., McCammon J. A. The statistical-thermodynamic basis for computation of binding affinities: a critical review. Biophys J. 1997 Mar;72(3):1047–1069. doi: 10.1016/S0006-3495(97)78756-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glatz J. F., Börchers T., Spener F., van der Vusse G. J. Fatty acids in cell signalling: modulation by lipid binding proteins. Prostaglandins Leukot Essent Fatty Acids. 1995 Feb-Mar;52(2-3):121–127. doi: 10.1016/0952-3278(95)90010-1. [DOI] [PubMed] [Google Scholar]
- Glatz J. F., van der Vusse G. J. Cellular fatty acid-binding proteins: current concepts and future directions. 1990 Oct 15-Nov 8Mol Cell Biochem. 98(1-2):237–251. doi: 10.1007/BF00231390. [DOI] [PubMed] [Google Scholar]
- Glatz J. F., van der Vusse G. J. Cellular fatty acid-binding proteins: their function and physiological significance. Prog Lipid Res. 1996 Sep;35(3):243–282. doi: 10.1016/s0163-7827(96)00006-9. [DOI] [PubMed] [Google Scholar]
- Ichiye T., Karplus M. Collective motions in proteins: a covariance analysis of atomic fluctuations in molecular dynamics and normal mode simulations. Proteins. 1991;11(3):205–217. doi: 10.1002/prot.340110305. [DOI] [PubMed] [Google Scholar]
- Jakoby M. G., Miller K. R., Toner J. J., Bauman A., Cheng L., Li E., Cistola D. P. Ligand-protein electrostatic interactions govern the specificity of retinol- and fatty acid-binding proteins. Biochemistry. 1993 Jan 26;32(3):872–878. doi: 10.1021/bi00054a019. [DOI] [PubMed] [Google Scholar]
- LaLonde J. M., Bernlohr D. A., Banaszak L. J. The up-and-down beta-barrel proteins. FASEB J. 1994 Dec;8(15):1240–1247. doi: 10.1096/fasebj.8.15.8001736. [DOI] [PubMed] [Google Scholar]
- Mensink R. P., Katan M. B. Trans monounsaturated fatty acids in nutrition and their impact on serum lipoprotein levels in man. Prog Lipid Res. 1993;32(1):111–122. doi: 10.1016/0163-7827(93)90007-j. [DOI] [PubMed] [Google Scholar]
- Richieri G. V., Ogata R. T., Kleinfeld A. M. Equilibrium constants for the binding of fatty acids with fatty acid-binding proteins from adipocyte, intestine, heart, and liver measured with the fluorescent probe ADIFAB. J Biol Chem. 1994 Sep 30;269(39):23918–23930. [PubMed] [Google Scholar]
- Richieri G. V., Ogata R. T., Kleinfeld A. M. Kinetics of fatty acid interactions with fatty acid binding proteins from adipocyte, heart, and intestine. J Biol Chem. 1996 May 10;271(19):11291–11300. doi: 10.1074/jbc.271.19.11291. [DOI] [PubMed] [Google Scholar]
- Richieri G. V., Ogata R. T., Kleinfeld A. M. Thermodynamics of fatty acid binding to fatty acid-binding proteins and fatty acid partition between water and membranes measured using the fluorescent probe ADIFAB. J Biol Chem. 1995 Jun 23;270(25):15076–15084. doi: 10.1074/jbc.270.25.15076. [DOI] [PubMed] [Google Scholar]
- Teboul L., Gaillard D., Staccini L., Inadera H., Amri E. Z., Grimaldi P. A. Thiazolidinediones and fatty acids convert myogenic cells into adipose-like cells. J Biol Chem. 1995 Nov 24;270(47):28183–28187. doi: 10.1074/jbc.270.47.28183. [DOI] [PubMed] [Google Scholar]
- Veerkamp J. H. Fatty acid transport and fatty acid-binding proteins. Proc Nutr Soc. 1995 Mar;54(1):23–37. doi: 10.1079/pns19950035. [DOI] [PubMed] [Google Scholar]
- Veerkamp J. H., Peeters R. A., Maatman R. G. Structural and functional features of different types of cytoplasmic fatty acid-binding proteins. Biochim Biophys Acta. 1991 Jan 4;1081(1):1–24. doi: 10.1016/0005-2760(91)90244-c. [DOI] [PubMed] [Google Scholar]
- Venable R. M., Zhang Y., Hardy B. J., Pastor R. W. Molecular dynamics simulations of a lipid bilayer and of hexadecane: an investigation of membrane fluidity. Science. 1993 Oct 8;262(5131):223–226. doi: 10.1126/science.8211140. [DOI] [PubMed] [Google Scholar]
- Woolf T. B. Simulations of fatty acid-binding proteins suggest sites important for function. I. Stearic acid. Biophys J. 1998 Feb;74(2 Pt 1):681–693. doi: 10.1016/S0006-3495(98)73994-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xu Z., Bernlohr D. A., Banaszak L. J. The adipocyte lipid-binding protein at 1.6-A resolution. Crystal structures of the apoprotein and with bound saturated and unsaturated fatty acids. J Biol Chem. 1993 Apr 15;268(11):7874–7884. [PubMed] [Google Scholar]
- Young A. C., Scapin G., Kromminga A., Patel S. B., Veerkamp J. H., Sacchettini J. C. Structural studies on human muscle fatty acid binding protein at 1.4 A resolution: binding interactions with three C18 fatty acids. Structure. 1994 Jun 15;2(6):523–534. doi: 10.1016/s0969-2126(00)00052-6. [DOI] [PubMed] [Google Scholar]