Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Feb;74(2 Pt 1):708–721. doi: 10.1016/S0006-3495(98)73996-7

The coupling of electron transfer and proton translocation: electrostatic calculations on Paracoccus denitrificans cytochrome c oxidase.

A Kannt 1, C R Lancaster 1, H Michel 1
PMCID: PMC1302552  PMID: 9533684

Abstract

We have calculated the electrostatic potential and interaction energies of ionizable groups and analyzed the response of the protein environment to redox changes in Paracoccus denitrificans cytochrome c oxidase by using a continuum dielectric model and finite difference technique. Subsequent Monte Carlo sampling of protonation states enabled us to calculate the titration curves of all protonatable groups in the enzyme complex. Inclusion of a model membrane allowed us to restrict the calculations to the functionally essential subunits I and II. Some residues were calculated to have complex titration curves, as a result of strong electrostatic coupling, desolvation, and dipolar interactions. Around the heme a3-CuB binuclear center, we have identified a cluster of 18 strongly interacting residues that account for most of the proton uptake linked to electron transfer. This was calculated to be between 0.7 and 1.1 H+ per electron, depending on the redox transition considered. A hydroxide ion bound to CuB was determined to become protonated to form water upon transfer of the first electron to the binuclear site. The bulk of the protonation changes linked to further reduction of the heme a3-CuB center was calculated to be due to proton uptake by the interacting cluster and Glu(II-78). Upon formation of the three-electron reduced state (P1), His325, modeled in an alternative orientation away from CuB, was determined to become protonated. The agreement of these results with experiment and their relevance in the light of possible mechanisms of redox-coupled proton transfer are discussed.

Full Text

The Full Text of this article is available as a PDF (846.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adelroth P., Brzezinski P., Malmström B. G. Internal electron transfer in cytochrome c oxidase from Rhodobacter sphaeroides. Biochemistry. 1995 Mar 7;34(9):2844–2849. doi: 10.1021/bi00009a014. [DOI] [PubMed] [Google Scholar]
  2. Adelroth P., Sigurdson H., Hallén S., Brzezinski P. Kinetic coupling between electron and proton transfer in cytochrome c oxidase: simultaneous measurements of conductance and absorbance changes. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12292–12297. doi: 10.1073/pnas.93.22.12292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Babcock G. T., Wikström M. Oxygen activation and the conservation of energy in cell respiration. Nature. 1992 Mar 26;356(6367):301–309. doi: 10.1038/356301a0. [DOI] [PubMed] [Google Scholar]
  4. Bashford D., Gerwert K. Electrostatic calculations of the pKa values of ionizable groups in bacteriorhodopsin. J Mol Biol. 1992 Mar 20;224(2):473–486. doi: 10.1016/0022-2836(92)91009-e. [DOI] [PubMed] [Google Scholar]
  5. Beroza P., Fredkin D. R., Okamura M. Y., Feher G. Electrostatic calculations of amino acid titration and electron transfer, Q-AQB-->QAQ-B, in the reaction center. Biophys J. 1995 Jun;68(6):2233–2250. doi: 10.1016/S0006-3495(95)80406-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Beroza P., Fredkin D. R., Okamura M. Y., Feher G. Protonation of interacting residues in a protein by a Monte Carlo method: application to lysozyme and the photosynthetic reaction center of Rhodobacter sphaeroides. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5804–5808. doi: 10.1073/pnas.88.13.5804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Blair D. F., Ellis W. R., Jr, Wang H., Gray H. B., Chan S. I. Spectroelectrochemical study of cytochrome c oxidase: pH and temperature dependences of the cytochrome potentials. Characterization of site-site interactions. J Biol Chem. 1986 Sep 5;261(25):11524–11537. [PubMed] [Google Scholar]
  8. Capitanio N., Vygodina T. V., Capitanio G., Konstantinov A. A., Nicholls P., Papa S. Redox-linked protolytic reactions in soluble cytochrome-c oxidase from beef-heart mitochondria: redox Bohr effects. Biochim Biophys Acta. 1997 Jan 16;1318(1-2):255–265. doi: 10.1016/s0005-2728(96)00143-0. [DOI] [PubMed] [Google Scholar]
  9. Chance B., Saronio C., Leigh J. S., Jr Functional intermediates in the reaction of membrane-bound cytochrome oxidase with oxygen. J Biol Chem. 1975 Dec 25;250(24):9226–9237. [PubMed] [Google Scholar]
  10. Condon P. J., Royer W. E., Jr Crystal structure of oxygenated Scapharca dimeric hemoglobin at 1.7-A resolution. J Biol Chem. 1994 Oct 14;269(41):25259–25267. doi: 10.2210/pdb1hbi/pdb. [DOI] [PubMed] [Google Scholar]
  11. Fann Y. C., Ahmed I., Blackburn N. J., Boswell J. S., Verkhovskaya M. L., Hoffman B. M., Wikström M. Structure of CuB in the binuclear heme-copper center of the cytochrome aa3-type quinol oxidase from Bacillus subtilis: an ENDOR and EXAFS study. Biochemistry. 1995 Aug 15;34(32):10245–10255. doi: 10.1021/bi00032a019. [DOI] [PubMed] [Google Scholar]
  12. Fetter J. R., Qian J., Shapleigh J., Thomas J. W., García-Horsman A., Schmidt E., Hosler J., Babcock G. T., Gennis R. B., Ferguson-Miller S. Possible proton relay pathways in cytochrome c oxidase. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1604–1608. doi: 10.1073/pnas.92.5.1604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Garcia-Horsman J. A., Puustinen A., Gennis R. B., Wikström M. Proton transfer in cytochrome bo3 ubiquinol oxidase of Escherichia coli: second-site mutations in subunit I that restore proton pumping in the mutant Asp135-->Asn. Biochemistry. 1995 Apr 4;34(13):4428–4433. doi: 10.1021/bi00013a035. [DOI] [PubMed] [Google Scholar]
  14. Guss J. M., Harrowell P. R., Murata M., Norris V. A., Freeman H. C. Crystal structure analyses of reduced (CuI) poplar plastocyanin at six pH values. J Mol Biol. 1986 Nov 20;192(2):361–387. doi: 10.1016/0022-2836(86)90371-2. [DOI] [PubMed] [Google Scholar]
  15. Hallén S., Brzezinski P., Malmström B. G. Internal electron transfer in cytochrome c oxidase is coupled to the protonation of a group close to the bimetallic site. Biochemistry. 1994 Feb 15;33(6):1467–1472. doi: 10.1021/bi00172a024. [DOI] [PubMed] [Google Scholar]
  16. Hallén S., Nilsson T. Proton transfer during the reaction between fully reduced cytochrome c oxidase and dioxygen: pH and deuterium isotope effects. Biochemistry. 1992 Dec 1;31(47):11853–11859. doi: 10.1021/bi00162a025. [DOI] [PubMed] [Google Scholar]
  17. Haltia T., Saraste M., Wikström M. Subunit III of cytochrome c oxidase is not involved in proton translocation: a site-directed mutagenesis study. EMBO J. 1991 Aug;10(8):2015–2021. doi: 10.1002/j.1460-2075.1991.tb07731.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Han S., Ching Y. C., Rousseau D. L. Ferryl and hydroxy intermediates in the reaction of oxygen with reduced cytochrome c oxidase. Nature. 1990 Nov 1;348(6296):89–90. doi: 10.1038/348089a0. [DOI] [PubMed] [Google Scholar]
  19. Hendler R. W., Pardhasaradhi K., Reynafarje B., Ludwig B. Comparison of energy-transducing capabilities of the two- and three-subunit cytochromes aa3 from Paracoccus denitrificans and the 13-subunit beef heart enzyme. Biophys J. 1991 Aug;60(2):415–423. doi: 10.1016/S0006-3495(91)82067-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hosler J. P., Shapleigh J. P., Mitchell D. M., Kim Y., Pressler M. A., Georgiou C., Babcock G. T., Alben J. O., Ferguson-Miller S., Gennis R. B. Polar residues in helix VIII of subunit I of cytochrome c oxidase influence the activity and the structure of the active site. Biochemistry. 1996 Aug 20;35(33):10776–10783. doi: 10.1021/bi9606511. [DOI] [PubMed] [Google Scholar]
  21. Iwata S., Ostermeier C., Ludwig B., Michel H. Structure at 2.8 A resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature. 1995 Aug 24;376(6542):660–669. doi: 10.1038/376660a0. [DOI] [PubMed] [Google Scholar]
  22. Konstantinov A. A., Siletsky S., Mitchell D., Kaulen A., Gennis R. B. The roles of the two proton input channels in cytochrome c oxidase from Rhodobacter sphaeroides probed by the effects of site-directed mutations on time-resolved electrogenic intraprotein proton transfer. Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):9085–9090. doi: 10.1073/pnas.94.17.9085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lancaster C. R., Michel H., Honig B., Gunner M. R. Calculated coupling of electron and proton transfer in the photosynthetic reaction center of Rhodopseudomonas viridis. Biophys J. 1996 Jun;70(6):2469–2492. doi: 10.1016/S0006-3495(96)79820-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lübben M., Gerwert K. Redox FTIR difference spectroscopy using caged electrons reveals contributions of carboxyl groups to the catalytic mechanism of haem-copper oxidases. FEBS Lett. 1996 Nov 18;397(2-3):303–307. doi: 10.1016/s0014-5793(96)01174-x. [DOI] [PubMed] [Google Scholar]
  25. Merritt E. A., Murphy M. E. Raster3D Version 2.0. A program for photorealistic molecular graphics. Acta Crystallogr D Biol Crystallogr. 1994 Nov 1;50(Pt 6):869–873. doi: 10.1107/S0907444994006396. [DOI] [PubMed] [Google Scholar]
  26. Mitchell R., Mitchell P., Rich P. R. Protonation states of the catalytic intermediates of cytochrome c oxidase. Biochim Biophys Acta. 1992 Jul 17;1101(2):188–191. [PubMed] [Google Scholar]
  27. Mitchell R., Rich P. R. Proton uptake by cytochrome c oxidase on reduction and on ligand binding. Biochim Biophys Acta. 1994 Jun 28;1186(1-2):19–26. doi: 10.1016/0005-2728(94)90130-9. [DOI] [PubMed] [Google Scholar]
  28. Nicholls A., Sharp K. A., Honig B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins. 1991;11(4):281–296. doi: 10.1002/prot.340110407. [DOI] [PubMed] [Google Scholar]
  29. Ostermeier C., Harrenga A., Ermler U., Michel H. Structure at 2.7 A resolution of the Paracoccus denitrificans two-subunit cytochrome c oxidase complexed with an antibody FV fragment. Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):10547–10553. doi: 10.1073/pnas.94.20.10547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Puustinen A., Bailey J. A., Dyer R. B., Mecklenburg S. L., Wikström M., Woodruff W. H. Fourier transform infrared evidence for connectivity between CuB and glutamic acid 286 in cytochrome bo3 from Escherichia coli. Biochemistry. 1997 Oct 28;36(43):13195–13200. doi: 10.1021/bi971091o. [DOI] [PubMed] [Google Scholar]
  31. Rousseau D. L., Ching Y., Wang J. Proton translocation in cytochrome c oxidase: redox linkage through proximal ligand exchange on cytochrome a3. J Bioenerg Biomembr. 1993 Apr;25(2):165–176. doi: 10.1007/BF00762858. [DOI] [PubMed] [Google Scholar]
  32. Svensson-Ek M., Thomas J. W., Gennis R. B., Nilsson T., Brzezinski P. Kinetics of electron and proton transfer during the reaction of wild type and helix VI mutants of cytochrome bo3 with oxygen. Biochemistry. 1996 Oct 22;35(42):13673–13680. doi: 10.1021/bi961466q. [DOI] [PubMed] [Google Scholar]
  33. Thomas J. W., Puustinen A., Alben J. O., Gennis R. B., Wikström M. Substitution of asparagine for aspartate-135 in subunit I of the cytochrome bo ubiquinol oxidase of Escherichia coli eliminates proton-pumping activity. Biochemistry. 1993 Oct 12;32(40):10923–10928. doi: 10.1021/bi00091a048. [DOI] [PubMed] [Google Scholar]
  34. Tsukihara T., Aoyama H., Yamashita E., Tomizaki T., Yamaguchi H., Shinzawa-Itoh K., Nakashima R., Yaono R., Yoshikawa S. Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 A. Science. 1995 Aug 25;269(5227):1069–1074. doi: 10.1126/science.7652554. [DOI] [PubMed] [Google Scholar]
  35. Tsukihara T., Aoyama H., Yamashita E., Tomizaki T., Yamaguchi H., Shinzawa-Itoh K., Nakashima R., Yaono R., Yoshikawa S. The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 A. Science. 1996 May 24;272(5265):1136–1144. doi: 10.1126/science.272.5265.1136. [DOI] [PubMed] [Google Scholar]
  36. Varotsis C., Babcock G. T. Appearance of the v(FeIV = O) vibration from a ferryl-oxo intermediate in the cytochrome oxidase/dioxygen reaction. Biochemistry. 1990 Aug 14;29(32):7357–7362. doi: 10.1021/bi00484a001. [DOI] [PubMed] [Google Scholar]
  37. Verkhovskaya M. L., Garcìa-Horsman A., Puustinen A., Rigaud J. L., Morgan J. E., Verkhovsky M. I., Wikström M. Glutamic acid 286 in subunit I of cytochrome bo3 is involved in proton translocation. Proc Natl Acad Sci U S A. 1997 Sep 16;94(19):10128–10131. doi: 10.1073/pnas.94.19.10128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Verkhovsky M. I., Morgan J. E., Puustein A., Wikström M. Kinetic trapping of oxygen in cell respiration. Nature. 1996 Mar 21;380(6571):268–270. doi: 10.1038/380268a0. [DOI] [PubMed] [Google Scholar]
  39. Verkhovsky M. I., Morgan J. E., Wikström M. Control of electron delivery to the oxygen reduction site of cytochrome c oxidase: a role for protons. Biochemistry. 1995 Jun 6;34(22):7483–7491. doi: 10.1021/bi00022a023. [DOI] [PubMed] [Google Scholar]
  40. Verkhovsky M. I., Morgan J. E., Wikström M. Oxygen binding and activation: early steps in the reaction of oxygen with cytochrome c oxidase. Biochemistry. 1994 Mar 15;33(10):3079–3086. doi: 10.1021/bi00176a042. [DOI] [PubMed] [Google Scholar]
  41. Wikström K. F., Harmon H. J., Ingledew W. J., Chance B. A re-evaluation of the spectral, potentiometric and energy-linked properties of cytochrome c oxidase in mitochondria. FEBS Lett. 1976 Jun 15;65(3):259–277. doi: 10.1016/0014-5793(76)80127-5. [DOI] [PubMed] [Google Scholar]
  42. Wikström M., Bogachev A., Finel M., Morgan J. E., Puustinen A., Raitio M., Verkhovskaya M., Verkhovsky M. I. Mechanism of proton translocation by the respiratory oxidases. The histidine cycle. Biochim Biophys Acta. 1994 Aug 30;1187(2):106–111. doi: 10.1016/0005-2728(94)90093-0. [DOI] [PubMed] [Google Scholar]
  43. Wikström M. Identification of the electron transfers in cytochrome oxidase that are coupled to proton-pumping. Nature. 1989 Apr 27;338(6218):776–778. doi: 10.1038/338776a0. [DOI] [PubMed] [Google Scholar]
  44. Wilson D. F., Lindsay J. G., Brocklehurst E. S. Heme-heme interaction in cytochrome oxidase. Biochim Biophys Acta. 1972 Feb 28;256(2):277–286. doi: 10.1016/0005-2728(72)90058-8. [DOI] [PubMed] [Google Scholar]
  45. Woodruff W. H. Coordination dynamics of heme-copper oxidases. The ligand shuttle and the control and coupling of electron transfer and proton translocation. J Bioenerg Biomembr. 1993 Apr;25(2):177–188. doi: 10.1007/BF00762859. [DOI] [PubMed] [Google Scholar]
  46. Yang A. S., Gunner M. R., Sampogna R., Sharp K., Honig B. On the calculation of pKas in proteins. Proteins. 1993 Mar;15(3):252–265. doi: 10.1002/prot.340150304. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES