Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Feb;74(2 Pt 1):745–752. doi: 10.1016/S0006-3495(98)73999-2

Steady-state compartmentalization of lipid membranes by active proteins.

M C Sabra 1, O G Mouritsen 1
PMCID: PMC1302555  PMID: 9533687

Abstract

Using a simple microscopic model of lipid-protein interactions, based on the hydrophobic matching principle, we study some generic aspects of lipid-membrane compartmentalization controlled by a dispersion of active integral membrane proteins. The activity of the proteins is simulated by conformational excitations governed by an external drive, and the deexcitation is controlled by interaction of the protein with its lipid surroundings. In response to the flux of energy into the proteins from the environment and the subsequent dissipation of energy into the lipid bilayer, the lipid-protein assembly reorganizes into a steady-state structure with a typical length scale determined by the strength of the external drive. In the specific case of a mixed dimyristoylphosphatidylcholine-distearoylphosphatidylcholine bilayer in the gel-fluid coexistence region, it is shown explicitly by computer simulation that the activity of an integral membrane protein can lead to a compartmentalization of the lipid-bilayer membrane. The compartmentalization is related to the dynamical process of phase separation and lipid domain formation.

Full Text

The Full Text of this article is available as a PDF (336.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown M. F. Modulation of rhodopsin function by properties of the membrane bilayer. Chem Phys Lipids. 1994 Sep 6;73(1-2):159–180. doi: 10.1016/0009-3084(94)90180-5. [DOI] [PubMed] [Google Scholar]
  2. Christensen JJ, Elder K, Fogedby HC. Phase segregation dynamics of a chemically reactive binary mixture. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996 Sep;54(3):R2212–R2215. doi: 10.1103/physreve.54.r2212. [DOI] [PubMed] [Google Scholar]
  3. Dibble A. R., Hinderliter A. K., Sando J. J., Biltonen R. L. Lipid lateral heterogeneity in phosphatidylcholine/phosphatidylserine/diacylglycerol vesicles and its influence on protein kinase C activation. Biophys J. 1996 Oct;71(4):1877–1890. doi: 10.1016/S0006-3495(96)79387-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dumas F., Sperotto M. M., Lebrun M. C., Tocanne J. F., Mouritsen O. G. Molecular sorting of lipids by bacteriorhodopsin in dilauroylphosphatidylcholine/distearoylphosphatidylcholine lipid bilayers. Biophys J. 1997 Oct;73(4):1940–1953. doi: 10.1016/S0006-3495(97)78225-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fredrickson GH. Diffusion-controlled reactions at polymer-polymer interfaces. Phys Rev Lett. 1996 Apr 29;76(18):3440–3443. doi: 10.1103/PhysRevLett.76.3440. [DOI] [PubMed] [Google Scholar]
  6. Gil T., Sabra M. C., Ipsen J. H., Mouritsen O. G. Wetting and capillary condensation as means of protein organization in membranes. Biophys J. 1997 Oct;73(4):1728–1741. doi: 10.1016/S0006-3495(97)78204-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Glotzer SC, Di Marzio EA, Muthukumar M. Reaction-controlled morphology of phase-separating mixtures. Phys Rev Lett. 1995 Mar 13;74(11):2034–2037. doi: 10.1103/PhysRevLett.74.2034. [DOI] [PubMed] [Google Scholar]
  8. Glotzer SC, Stauffer D, Jan N. Monte Carlo simulations of phase separation in chemically reactive binary mixtures. Phys Rev Lett. 1994 Jun 27;72(26):4109–4112. doi: 10.1103/PhysRevLett.72.4109. [DOI] [PubMed] [Google Scholar]
  9. Harris R, Grant M. Thermal conductivity of a kinetic Ising model. Phys Rev B Condens Matter. 1988 Nov 1;38(13):9323–9326. doi: 10.1103/physrevb.38.9323. [DOI] [PubMed] [Google Scholar]
  10. Hønger T., Jørgensen K., Biltonen R. L., Mouritsen O. G. Systematic relationship between phospholipase A2 activity and dynamic lipid bilayer microheterogeneity. Biochemistry. 1996 Jul 16;35(28):9003–9006. doi: 10.1021/bi960866a. [DOI] [PubMed] [Google Scholar]
  11. Jørgensen K., Mouritsen O. G. Phase separation dynamics and lateral organization of two-component lipid membranes. Biophys J. 1995 Sep;69(3):942–954. doi: 10.1016/S0006-3495(95)79968-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jørgensen K., Sperotto M. M., Mouritsen O. G., Ipsen J. H., Zuckermann M. J. Phase equilibria and local structure in binary lipid bilayers. Biochim Biophys Acta. 1993 Oct 10;1152(1):135–145. doi: 10.1016/0005-2736(93)90240-z. [DOI] [PubMed] [Google Scholar]
  13. Kinnunen P. K. On the principles of functional ordering in biological membranes. Chem Phys Lipids. 1991 Mar;57(2-3):375–399. doi: 10.1016/0009-3084(91)90087-r. [DOI] [PubMed] [Google Scholar]
  14. Lehtonen J. Y., Holopainen J. M., Kinnunen P. K. Evidence for the formation of microdomains in liquid crystalline large unilamellar vesicles caused by hydrophobic mismatch of the constituent phospholipids. Biophys J. 1996 Apr;70(4):1753–1760. doi: 10.1016/S0006-3495(96)79738-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Melo E. C., Lourtie I. M., Sankaram M. B., Thompson T. E., Vaz W. L. Effects of domain connection and disconnection on the yields of in-plane bimolecular reactions in membranes. Biophys J. 1992 Dec;63(6):1506–1512. doi: 10.1016/S0006-3495(92)81735-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mouritsen O. G., Bloom M. Mattress model of lipid-protein interactions in membranes. Biophys J. 1984 Aug;46(2):141–153. doi: 10.1016/S0006-3495(84)84007-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mouritsen O. G., Bloom M. Models of lipid-protein interactions in membranes. Annu Rev Biophys Biomol Struct. 1993;22:145–171. doi: 10.1146/annurev.bb.22.060193.001045. [DOI] [PubMed] [Google Scholar]
  18. Mouritsen O. G., Dammann B., Fogedby H. C., Ipsen J. H., Jeppesen C., Jørgensen K., Risbo J., Sabra M. C., Sperotto M. M., Zuckermann M. J. The computer as a laboratory for the physical chemistry of membranes. Biophys Chem. 1995 Jun-Jul;55(1-2):55–68. doi: 10.1016/0301-4622(94)00142-7. [DOI] [PubMed] [Google Scholar]
  19. Mouritsen O. G., Jørgensen K. Dynamical order and disorder in lipid bilayers. Chem Phys Lipids. 1994 Sep 6;73(1-2):3–25. doi: 10.1016/0009-3084(94)90171-6. [DOI] [PubMed] [Google Scholar]
  20. Mustonen P., Virtanen J. A., Somerharju P. J., Kinnunen P. K. Binding of cytochrome c to liposomes as revealed by the quenching of fluorescence from pyrene-labeled phospholipids. Biochemistry. 1987 Jun 2;26(11):2991–2997. doi: 10.1021/bi00385a006. [DOI] [PubMed] [Google Scholar]
  21. O'Shaughnessy B, Sawhney U. Polymer reaction kinetics at interfaces. Phys Rev Lett. 1996 Apr 29;76(18):3444–3447. doi: 10.1103/PhysRevLett.76.3444. [DOI] [PubMed] [Google Scholar]
  22. Pedersen S., Jørgensen K., Baekmark T. R., Mouritsen O. G. Indirect evidence for lipid-domain formation in the transition region of phospholipid bilayers by two-probe fluorescence energy transfer. Biophys J. 1996 Aug;71(2):554–560. doi: 10.1016/S0006-3495(96)79279-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Piknová B., Pérochon E., Tocanne J. F. Hydrophobic mismatch and long-range protein/lipid interactions in bacteriorhodopsin/phosphatidylcholine vesicles. Eur J Biochem. 1993 Dec 1;218(2):385–396. doi: 10.1111/j.1432-1033.1993.tb18388.x. [DOI] [PubMed] [Google Scholar]
  24. Pink D. A., Green T. J., Chapman D. Raman scattering in bilayers of saturated phosphatidylcholines. Experiment and theory. Biochemistry. 1980 Jan 22;19(2):349–356. doi: 10.1021/bi00543a016. [DOI] [PubMed] [Google Scholar]
  25. Sankaram M. B., Marsh D., Thompson T. E. Determination of fluid and gel domain sizes in two-component, two-phase lipid bilayers. An electron spin resonance spin label study. Biophys J. 1992 Aug;63(2):340–349. doi: 10.1016/S0006-3495(92)81619-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schram V., Thompson T. E. Influence of the intrinsic membrane protein bacteriorhodopsin on gel-phase domain topology in two-component phase-separated bilayers. Biophys J. 1997 May;72(5):2217–2225. doi: 10.1016/S0006-3495(97)78865-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Singer S. J., Nicolson G. L. The fluid mosaic model of the structure of cell membranes. Science. 1972 Feb 18;175(4023):720–731. doi: 10.1126/science.175.4023.720. [DOI] [PubMed] [Google Scholar]
  28. Sperotto M. M., Mouritsen O. G. Lipid enrichment and selectivity of integral membrane proteins in two-component lipid bilayers. Eur Biophys J. 1993;22(5):323–328. doi: 10.1007/BF00213555. [DOI] [PubMed] [Google Scholar]
  29. Sternberg B., L'Hostis C., Whiteway C. A., Watts A. The essential role of specific Halobacterium halobium polar lipids in 2D-array formation of bacteriorhodopsin. Biochim Biophys Acta. 1992 Jul 8;1108(1):21–30. doi: 10.1016/0005-2736(92)90110-8. [DOI] [PubMed] [Google Scholar]
  30. Toxvaerd S. Molecular dynamics simulations of phase separation in chemically reactive binary mixtures. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996 Apr;53(4):3710–3716. doi: 10.1103/physreve.53.3710. [DOI] [PubMed] [Google Scholar]
  31. Zhang Z., Sperotto M. M., Zuckermann M. J., Mouritsen O. G. A microscopic model for lipid/protein bilayers with critical mixing. Biochim Biophys Acta. 1993 Apr 8;1147(1):154–160. doi: 10.1016/0005-2736(93)90326-u. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES