Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Feb;74(2 Pt 1):753–763. doi: 10.1016/S0006-3495(98)74000-7

Conservation of the conformation of the porphyrin macrocycle in hemoproteins.

W Jentzen 1, J G Ma 1, J A Shelnutt 1
PMCID: PMC1302556  PMID: 9533688

Abstract

The out-of-plane distortions of porphyrins in hemoproteins are characterized by displacements along the lowest-frequency out-of-plane normal coordinates of the D4h-symmetric macrocycle. X-ray crystal structures are analyzed using a computational procedure developed for determining these orthogonal displacements. The x-ray crystal structures of the heme groups are described within experimental error, using the set composed of only the lowest frequency normal coordinate of each out-of-plane symmetry type. That is, the distortion is accurately simulated by a linear combination of these orthonormal deformations, which include saddling (B2u), ruffling (B1u), doming (A2u), waving (Eg), and propellering (A1u). For example, orthonormal structural decomposition of the hemes in deoxymyoglobins reveals a predominantly dom heme deformation combined with a smaller wav(y) deformation. Generally, the heme conformation is remarkably similar for proteins from different species. For cytochromes c, the conformation is conserved as long as the amino acids between the cysteine linkages to the heme are homologous. Differences occur if this short segment varies in the number or type of residues, suggesting that this small segment causes the nonplanar distortion. Some noncovalently linked hemes like those in the peroxidases also have highly conserved characteristic distortions. Conservation occurs even for some proteins with a large natural variation in the amino acid sequence.

Full Text

The Full Text of this article is available as a PDF (395.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benning M. M., Meyer T. E., Holden H. M. X-Ray structure of the cytochrome c2 isolated from Paracoccus denitrificans refined to 1.7-A resolution. Arch Biochem Biophys. 1994 May 1;310(2):460–466. doi: 10.1006/abbi.1994.1193. [DOI] [PubMed] [Google Scholar]
  2. Benning M. M., Wesenberg G., Caffrey M. S., Bartsch R. G., Meyer T. E., Cusanovich M. A., Rayment I., Holden H. M. Molecular structure of cytochrome c2 isolated from Rhodobacter capsulatus determined at 2.5 A resolution. J Mol Biol. 1991 Aug 5;220(3):673–685. doi: 10.1016/0022-2836(91)90109-j. [DOI] [PubMed] [Google Scholar]
  3. Berghuis A. M., Brayer G. D. Oxidation state-dependent conformational changes in cytochrome c. J Mol Biol. 1992 Feb 20;223(4):959–976. doi: 10.1016/0022-2836(92)90255-i. [DOI] [PubMed] [Google Scholar]
  4. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  5. Bushnell G. W., Louie G. V., Brayer G. D. High-resolution three-dimensional structure of horse heart cytochrome c. J Mol Biol. 1990 Jul 20;214(2):585–595. doi: 10.1016/0022-2836(90)90200-6. [DOI] [PubMed] [Google Scholar]
  6. Czjzek M., Guerlesquin F., Bruschi M., Haser R. Crystal structure of a dimeric octaheme cytochrome c3 (M(r) 26,000) from Desulfovibrio desulfuricans Norway. Structure. 1996 Apr 15;4(4):395–404. doi: 10.1016/s0969-2126(96)00045-7. [DOI] [PubMed] [Google Scholar]
  7. Czjzek M., Payan F., Guerlesquin F., Bruschi M., Haser R. Crystal structure of cytochrome c3 from Desulfovibrio desulfuricans Norway at 1.7 A resolution. J Mol Biol. 1994 Nov 4;243(4):653–667. doi: 10.1016/0022-2836(94)90039-6. [DOI] [PubMed] [Google Scholar]
  8. Dobbs A. J., Anderson B. F., Faber H. R., Baker E. N. Three-dimensional structure of cytochrome c' from two Alcaligenes species and the implications for four-helix bundle structures. Acta Crystallogr D Biol Crystallogr. 1996 Mar 1;52(Pt 2):356–368. doi: 10.1107/S0907444995008328. [DOI] [PubMed] [Google Scholar]
  9. Finzel B. C., Poulos T. L., Kraut J. Crystal structure of yeast cytochrome c peroxidase refined at 1.7-A resolution. J Biol Chem. 1984 Nov 10;259(21):13027–13036. [PubMed] [Google Scholar]
  10. Finzel B. C., Weber P. C., Hardman K. D., Salemme F. R. Structure of ferricytochrome c' from Rhodospirillum molischianum at 1.67 A resolution. J Mol Biol. 1985 Dec 5;186(3):627–643. doi: 10.1016/0022-2836(85)90135-4. [DOI] [PubMed] [Google Scholar]
  11. Frauenfelder H., Petsko G. A., Tsernoglou D. Temperature-dependent X-ray diffraction as a probe of protein structural dynamics. Nature. 1979 Aug 16;280(5723):558–563. doi: 10.1038/280558a0. [DOI] [PubMed] [Google Scholar]
  12. Hasemann C. A., Kurumbail R. G., Boddupalli S. S., Peterson J. A., Deisenhofer J. Structure and function of cytochromes P450: a comparative analysis of three crystal structures. Structure. 1995 Jan 15;3(1):41–62. doi: 10.1016/s0969-2126(01)00134-4. [DOI] [PubMed] [Google Scholar]
  13. Hasemann C. A., Ravichandran K. G., Peterson J. A., Deisenhofer J. Crystal structure and refinement of cytochrome P450terp at 2.3 A resolution. J Mol Biol. 1994 Mar 4;236(4):1169–1185. doi: 10.1016/0022-2836(94)90019-1. [DOI] [PubMed] [Google Scholar]
  14. Higuchi Y., Kusunoki M., Matsuura Y., Yasuoka N., Kakudo M. Refined structure of cytochrome c3 at 1.8 A resolution. J Mol Biol. 1984 Jan 5;172(1):109–139. doi: 10.1016/0022-2836(84)90417-0. [DOI] [PubMed] [Google Scholar]
  15. Hoard J. L. Some aspects of metalloporphyrin stereochemistry. Ann N Y Acad Sci. 1973;206:18–31. doi: 10.1111/j.1749-6632.1973.tb43202.x. [DOI] [PubMed] [Google Scholar]
  16. Hobbs J. D., Shelnutt J. A. Conserved nonplanar heme distortions in cytochromes c. J Protein Chem. 1995 Jan;14(1):19–25. doi: 10.1007/BF01902840. [DOI] [PubMed] [Google Scholar]
  17. Kunishima N., Fukuyama K., Matsubara H., Hatanaka H., Shibano Y., Amachi T. Crystal structure of the fungal peroxidase from Arthromyces ramosus at 1.9 A resolution. Structural comparisons with the lignin and cytochrome c peroxidases. J Mol Biol. 1994 Jan 7;235(1):331–344. doi: 10.1016/s0022-2836(05)80037-3. [DOI] [PubMed] [Google Scholar]
  18. Lesk A. M., Levitt M., Chothia C. Alignment of the amino acid sequences of distantly related proteins using variable gap penalties. Protein Eng. 1986 Oct-Nov;1(1):77–78. doi: 10.1093/protein/1.1.77. [DOI] [PubMed] [Google Scholar]
  19. Li H., Poulos T. L. Modeling protein-substrate interactions in the heme domain of cytochrome P450(BM-3). Acta Crystallogr D Biol Crystallogr. 1995 Jan 1;51(Pt 1):21–32. doi: 10.1107/S0907444994009194. [DOI] [PubMed] [Google Scholar]
  20. Louie G. V., Brayer G. D. High-resolution refinement of yeast iso-1-cytochrome c and comparisons with other eukaryotic cytochromes c. J Mol Biol. 1990 Jul 20;214(2):527–555. doi: 10.1016/0022-2836(90)90197-T. [DOI] [PubMed] [Google Scholar]
  21. Matias P. M., Frazão C., Morais J., Coll M., Carrondo M. A. Structure analysis of cytochrome c3 from Desulfovibrio vulgaris Hildenborough at 1.9 A resolution. J Mol Biol. 1993 Dec 5;234(3):680–699. doi: 10.1006/jmbi.1993.1620. [DOI] [PubMed] [Google Scholar]
  22. Matias P. M., Morais J., Coelho R., Carrondo M. A., Wilson K., Dauter Z., Sieker L. Cytochrome c3 from Desulfovibrio gigas: crystal structure at 1.8 A resolution and evidence for a specific calcium-binding site. Protein Sci. 1996 Jul;5(7):1342–1354. doi: 10.1002/pro.5560050713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Matsuura Y., Takano T., Dickerson R. E. Structure of cytochrome c551 from Pseudomonas aeruginosa refined at 1.6 A resolution and comparison of the two redox forms. J Mol Biol. 1982 Apr 5;156(2):389–409. doi: 10.1016/0022-2836(82)90335-7. [DOI] [PubMed] [Google Scholar]
  24. Morais J., Palma P. N., Frazão C., Caldeira J., LeGall J., Moura I., Moura J. J., Carrondo M. A. Structure of the tetraheme cytochrome from Desulfovibrio desulfuricans ATCC 27774: X-ray diffraction and electron paramagnetic resonance studies. Biochemistry. 1995 Oct 3;34(39):12830–12841. doi: 10.1021/bi00039a044. [DOI] [PubMed] [Google Scholar]
  25. Morimoto Y., Tani T., Okumura H., Higuchi Y., Yasuoka N. Effects of amino acid substitution on three-dimensional structure: an X-ray analysis of cytochrome c3 from Desulfovibrio vulgaris Hildenborough at 2 A resolution. J Biochem. 1991 Oct;110(4):532–540. doi: 10.1093/oxfordjournals.jbchem.a123615. [DOI] [PubMed] [Google Scholar]
  26. Ochi H., Hata Y., Tanaka N., Kakudo M., Sakurai T., Aihara S., Morita Y. Structure of rice ferricytochrome c at 2.0 A resolution. J Mol Biol. 1983 May 25;166(3):407–418. doi: 10.1016/s0022-2836(83)80092-8. [DOI] [PubMed] [Google Scholar]
  27. Phillips S. E., Schoenborn B. P. Neutron diffraction reveals oxygen-histidine hydrogen bond in oxymyoglobin. Nature. 1981 Jul 2;292(5818):81–82. doi: 10.1038/292081a0. [DOI] [PubMed] [Google Scholar]
  28. Poulos T. L., Finzel B. C., Howard A. J. Crystal structure of substrate-free Pseudomonas putida cytochrome P-450. Biochemistry. 1986 Sep 9;25(18):5314–5322. doi: 10.1021/bi00366a049. [DOI] [PubMed] [Google Scholar]
  29. Sayle R. A., Milner-White E. J. RASMOL: biomolecular graphics for all. Trends Biochem Sci. 1995 Sep;20(9):374–374. doi: 10.1016/s0968-0004(00)89080-5. [DOI] [PubMed] [Google Scholar]
  30. Stampf D. R., Felder C. E., Sussman J. L. PDBbrowse--a graphics interface to the Brookhaven Protein Data Bank. Nature. 1995 Apr 6;374(6522):572–574. doi: 10.1038/374572a0. [DOI] [PubMed] [Google Scholar]
  31. Sundaramoorthy M., Kishi K., Gold M. H., Poulos T. L. Preliminary crystallographic analysis of manganese peroxidase from Phanerochaete chrysosporium. J Mol Biol. 1994 May 20;238(5):845–848. doi: 10.1006/jmbi.1994.1338. [DOI] [PubMed] [Google Scholar]
  32. Sweet R. M. Evolutionary similarity among peptide segments is a basis for prediction of protein folding. Biopolymers. 1986 Aug;25(8):1565–1577. doi: 10.1002/bip.360250813. [DOI] [PubMed] [Google Scholar]
  33. Takano T., Dickerson R. E. Redox conformation changes in refined tuna cytochrome c. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6371–6375. doi: 10.1073/pnas.77.11.6371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Yang F., Phillips G. N., Jr Crystal structures of CO-, deoxy- and met-myoglobins at various pH values. J Mol Biol. 1996 Mar 8;256(4):762–774. doi: 10.1006/jmbi.1996.0123. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES