Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Feb;74(2 Pt 1):803–815. doi: 10.1016/S0006-3495(98)74005-6

A model for the recovery kinetics of rod phototransduction, based on the enzymatic deactivation of rhodopsin.

U Laitko 1, K P Hofmann 1
PMCID: PMC1302561  PMID: 9533693

Abstract

We propose a model for the recovery of the retinal rod photoresponse after a short stimulus. The approach describes the enzymatic deactivation of the photoactivated receptor, rhodopsin, by simple enzyme kinetics. An important feature of this description is that the R* deactivation obeys different time laws, depending on the numbers of R* formed per disc membrane and available enzyme molecules. If the enzyme works below substrate saturation, the rate of deactivation depends linearly on the number of R*, whereas for substrate saturation a hyperbolic relation--the well-known Michaelis-Menten equation--applies. This dichotomy is used to explain experimental finding that the relation between the saturation time of the photoresponse after short illumination and the flash strength has two sharply separated branches for low and high flash intensities (up to approximately 10% bleaching). By relating both branches to properties of the enzymatic rhodopsin deactivation, the new model transcends the classical notion of a constant characteristic lifetime of activated rhodopsin. With parameters that are plausible in the light of the available data and the additional information that the deactivating enzyme, rhodopsin kinase, and the signaling G-protein, transducin, compete for the active receptor, the slopes of the saturation function are correctly reproduced.

Full Text

The Full Text of this article is available as a PDF (137.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baylor D. A., Nunn B. J., Schnapf J. L. The photocurrent, noise and spectral sensitivity of rods of the monkey Macaca fascicularis. J Physiol. 1984 Dec;357:575–607. doi: 10.1113/jphysiol.1984.sp015518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Birch D. G., Hood D. C., Nusinowitz S., Pepperberg D. R. Abnormal activation and inactivation mechanisms of rod transduction in patients with autosomal dominant retinitis pigmentosa and the pro-23-his mutation. Invest Ophthalmol Vis Sci. 1995 Jul;36(8):1603–1614. [PubMed] [Google Scholar]
  3. Chen J., Makino C. L., Peachey N. S., Baylor D. A., Simon M. I. Mechanisms of rhodopsin inactivation in vivo as revealed by a COOH-terminal truncation mutant. Science. 1995 Jan 20;267(5196):374–377. doi: 10.1126/science.7824934. [DOI] [PubMed] [Google Scholar]
  4. Dean K. R., Akhtar M. Novel mechanism for the activation of rhodopsin kinase: implications for other G protein-coupled receptor kinases (GRK's). Biochemistry. 1996 May 14;35(19):6164–6172. doi: 10.1021/bi952480q. [DOI] [PubMed] [Google Scholar]
  5. Felber S., Breuer H. P., Petruccione F., Honerkamp J., Hofmann K. P. Stochastic simulation of the transducin GTPase cycle. Biophys J. 1996 Dec;71(6):3051–3063. doi: 10.1016/S0006-3495(96)79499-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Helmreich E. J., Hofmann K. P. Structure and function of proteins in G-protein-coupled signal transfer. Biochim Biophys Acta. 1996 Oct 29;1286(3):285–322. doi: 10.1016/s0304-4157(96)00013-5. [DOI] [PubMed] [Google Scholar]
  7. Inglese J., Freedman N. J., Koch W. J., Lefkowitz R. J. Structure and mechanism of the G protein-coupled receptor kinases. J Biol Chem. 1993 Nov 15;268(32):23735–23738. [PubMed] [Google Scholar]
  8. Lagnado L., Baylor D. Signal flow in visual transduction. Neuron. 1992 Jun;8(6):995–1002. doi: 10.1016/0896-6273(92)90122-t. [DOI] [PubMed] [Google Scholar]
  9. Lamb T. D., Pugh E. N., Jr A quantitative account of the activation steps involved in phototransduction in amphibian photoreceptors. J Physiol. 1992 Apr;449:719–758. doi: 10.1113/jphysiol.1992.sp019111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lamb T. D. Stochastic simulation of activation in the G-protein cascade of phototransduction. Biophys J. 1994 Oct;67(4):1439–1454. doi: 10.1016/S0006-3495(94)80617-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Langlois G., Chen C. K., Palczewski K., Hurley J. B., Vuong T. M. Responses of the phototransduction cascade to dim light. Proc Natl Acad Sci U S A. 1996 May 14;93(10):4677–4682. doi: 10.1073/pnas.93.10.4677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lyubarsky A. L., Pugh E. N., Jr Recovery phase of the murine rod photoresponse reconstructed from electroretinographic recordings. J Neurosci. 1996 Jan 15;16(2):563–571. doi: 10.1523/JNEUROSCI.16-02-00563.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mangini N. J., Pepperberg D. R. Immunolocalization of 48K in rod photoreceptors. Light and ATP increase OS labeling. Invest Ophthalmol Vis Sci. 1988 Aug;29(8):1221–1234. [PubMed] [Google Scholar]
  14. Miller J. L., Fox D. A., Litman B. J. Amplification of phosphodiesterase activation is greatly reduced by rhodopsin phosphorylation. Biochemistry. 1986 Sep 9;25(18):4983–4988. doi: 10.1021/bi00366a002. [DOI] [PubMed] [Google Scholar]
  15. Palczewski K. GTP-binding-protein-coupled receptor kinases--two mechanistic models. Eur J Biochem. 1997 Sep 1;248(2):261–269. doi: 10.1111/j.1432-1033.1997.00261.x. [DOI] [PubMed] [Google Scholar]
  16. Palczewski K., Jäger S., Buczyłko J., Crouch R. K., Bredberg D. L., Hofmann K. P., Asson-Batres M. A., Saari J. C. Rod outer segment retinol dehydrogenase: substrate specificity and role in phototransduction. Biochemistry. 1994 Nov 22;33(46):13741–13750. doi: 10.1021/bi00250a027. [DOI] [PubMed] [Google Scholar]
  17. Pepperberg D. R., Birch D. G., Hofmann K. P., Hood D. C. Recovery kinetics of human rod phototransduction inferred from the two-branched alpha-wave saturation function. J Opt Soc Am A Opt Image Sci Vis. 1996 Mar;13(3):586–600. doi: 10.1364/josaa.13.000586. [DOI] [PubMed] [Google Scholar]
  18. Pepperberg D. R., Cornwall M. C., Kahlert M., Hofmann K. P., Jin J., Jones G. J., Ripps H. Light-dependent delay in the falling phase of the retinal rod photoresponse. Vis Neurosci. 1992 Jan;8(1):9–18. doi: 10.1017/s0952523800006441. [DOI] [PubMed] [Google Scholar]
  19. Pepperberg D. R., Kahlert M., Krause A., Hofmann K. P. Photic modulation of a highly sensitive, near-infrared light-scattering signal recorded from intact retinal photoreceptors. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5531–5535. doi: 10.1073/pnas.85.15.5531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pugh E. N., Jr, Lamb T. D. Cyclic GMP and calcium: the internal messengers of excitation and adaptation in vertebrate photoreceptors. Vision Res. 1990;30(12):1923–1948. doi: 10.1016/0042-6989(90)90013-b. [DOI] [PubMed] [Google Scholar]
  21. Pulvermüller A., Maretzki D., Rudnicka-Nawrot M., Smith W. C., Palczewski K., Hofmann K. P. Functional differences in the interaction of arrestin and its splice variant, p44, with rhodopsin. Biochemistry. 1997 Jul 29;36(30):9253–9260. doi: 10.1021/bi970772g. [DOI] [PubMed] [Google Scholar]
  22. Pulvermüller A., Palczewski K., Hofmann K. P. Interaction between photoactivated rhodopsin and its kinase: stability and kinetics of complex formation. Biochemistry. 1993 Dec 28;32(51):14082–14088. doi: 10.1021/bi00214a002. [DOI] [PubMed] [Google Scholar]
  23. Schleicher A., Kühn H., Hofmann K. P. Kinetics, binding constant, and activation energy of the 48-kDa protein-rhodopsin complex by extra-metarhodopsin II. Biochemistry. 1989 Feb 21;28(4):1770–1775. doi: 10.1021/bi00430a052. [DOI] [PubMed] [Google Scholar]
  24. Schneeweis D. M., Schnapf J. L. Photovoltage of rods and cones in the macaque retina. Science. 1995 May 19;268(5213):1053–1056. doi: 10.1126/science.7754386. [DOI] [PubMed] [Google Scholar]
  25. Vuong T. M., Chabre M., Stryer L. Millisecond activation of transducin in the cyclic nucleotide cascade of vision. Nature. 1984 Oct 18;311(5987):659–661. doi: 10.1038/311659a0. [DOI] [PubMed] [Google Scholar]
  26. Wilden U., Hall S. W., Kühn H. Phosphodiesterase activation by photoexcited rhodopsin is quenched when rhodopsin is phosphorylated and binds the intrinsic 48-kDa protein of rod outer segments. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1174–1178. doi: 10.1073/pnas.83.5.1174. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES