Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Feb;74(2 Pt 1):816–830. doi: 10.1016/S0006-3495(98)74006-8

Reduction of an eight-state mechanism of cotransport to a six-state model using a new computer program.

S Falk 1, A Guay 1, C Chenu 1, S D Patil 1, A Berteloot 1
PMCID: PMC1302562  PMID: 9533694

Abstract

A computer program was developed to allow easy derivation of steady-state velocity and binding equations for multireactant mechanisms including or without rapid equilibrium segments. Its usefulness is illustrated by deriving the rate equation of the most general sequential iso ordered ter ter mechanism of cotransport in which two Na+ ions bind first to the carrier and mirror symmetry is assumed. It is demonstrated that this mechanism cannot be easily reduced to a previously proposed six-state model of Na+-D-glucose cotransport, which also includes a number of implicit assumptions. In fact, the latter model may only be valid over a restricted range of Na+ concentrations or when assuming very strong positive cooperativity for Na+ binding to the glucose symporter within a rapid equilibrium segment. We thus propose an equivalent eight-state model in which the concept of positive cooperativity is best explained within the framework of a polymeric structure of the transport protein involving a minimum number of two transport-competent and identical subunits. This model also includes an obligatory slow isomerization step between the Na+ and glucose-binding sequences, the nature of which might reflect the presence of functionally asymmetrical subunits.

Full Text

The Full Text of this article is available as a PDF (161.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett E., Kimmich G. A. The molecular mechanism and potential dependence of the Na+/glucose cotransporter. Biophys J. 1996 Apr;70(4):1676–1688. doi: 10.1016/S0006-3495(96)79730-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blank M. E., Bode F., Baumann K., Diedrich D. F. Computer analysis reveals changes in renal Na+-glucose cotransporter in diabetic rats. Am J Physiol. 1989 Aug;257(2 Pt 1):C385–C396. doi: 10.1152/ajpcell.1989.257.2.C385. [DOI] [PubMed] [Google Scholar]
  3. Béliveau R., Demeule M., Ibnoul-Khatib H., Bergeron M., Beauregard G., Potier M. Radiation-inactivation studies on brush-border-membrane vesicles. General considerations, and application to the glucose and phosphate carriers. Biochem J. 1988 Jun 15;252(3):807–813. doi: 10.1042/bj2520807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cha S. A simple method for derivation of rate equations for enzyme-catalyzed reactions under the rapid equilibrium assumption or combined assumptions of equilibrium and steady state. J Biol Chem. 1968 Feb 25;243(4):820–825. [PubMed] [Google Scholar]
  5. Chen X. Z., Coady M. J., Jackson F., Berteloot A., Lapointe J. Y. Thermodynamic determination of the Na+: glucose coupling ratio for the human SGLT1 cotransporter. Biophys J. 1995 Dec;69(6):2405–2414. doi: 10.1016/S0006-3495(95)80110-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chenu C., Berteloot A. Allosterism and Na(+)-D-glucose cotransport kinetics in rabbit jejunal vesicles: compatibility with mixed positive and negative cooperativities in a homo- dimeric or tetrameric structure and experimental evidence for only one transport protein involved. J Membr Biol. 1993 Mar;132(2):95–113. doi: 10.1007/BF00239000. [DOI] [PubMed] [Google Scholar]
  7. Cornish-Bowden A. An automatic method for deriving steady-state rate equations. Biochem J. 1977 Jul 1;165(1):55–59. doi: 10.1042/bj1650055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Crane R. K. The gradient hypothesis and other models of carrier-mediated active transport. Rev Physiol Biochem Pharmacol. 1977;78:99–159. doi: 10.1007/BFb0027722. [DOI] [PubMed] [Google Scholar]
  9. Dorando F. C., Crane R. K. Studies of the kinetics of Na+ gradient-coupled glucose transport as found in brush-border membrane vesicles from rabbit jejunum. Biochim Biophys Acta. 1984 May 30;772(3):273–287. doi: 10.1016/0005-2736(84)90144-5. [DOI] [PubMed] [Google Scholar]
  10. Fromm H. J. Computer-assisted derivation of steady-state rate equations. Methods Enzymol. 1979;63:84–103. doi: 10.1016/0076-6879(79)63007-0. [DOI] [PubMed] [Google Scholar]
  11. Gerardi-Laffin C., Delque-Bayer P., Sudaka P., Poiree J. C. Oligomeric structure of the sodium-dependent phlorizin binding protein from kidney brush-border membranes. Biochim Biophys Acta. 1993 Sep 5;1151(1):99–104. doi: 10.1016/0005-2736(93)90076-c. [DOI] [PubMed] [Google Scholar]
  12. Hazama A., Loo D. D., Wright E. M. Presteady-state currents of the rabbit Na+/glucose cotransporter (SGLT1). J Membr Biol. 1997 Jan 15;155(2):175–186. doi: 10.1007/s002329900169. [DOI] [PubMed] [Google Scholar]
  13. Heinz E., Geck P., Wilbrandt W. Coupling in secondary active transport. Activation of transport by co-transport and-or counter-transport with the fluxes of other solutes. Biochim Biophys Acta. 1972 Feb 11;255(2):442–461. doi: 10.1016/0005-2736(72)90149-6. [DOI] [PubMed] [Google Scholar]
  14. Herries D. G. The computerized derivation of steady-state rate equations for enzyme kinetics. Biochem J. 1984 Oct 15;223(2):551–553. doi: 10.1042/bj2230551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hopfer U., Groseclose R. The mechanism of Na+-dependent D-glucose transport. J Biol Chem. 1980 May 25;255(10):4453–4462. [PubMed] [Google Scholar]
  16. Hurst R. O. A computer program for writing the steady-state rate equation for a multisubstrate enzymic reaction. Can J Biochem. 1969 Oct;47(10):941–944. doi: 10.1139/o69-147. [DOI] [PubMed] [Google Scholar]
  17. Hurst R. O. A simplified approach to the use of determinants in the calculation of the rat equation for a complex enzyme system. Can J Biochem. 1967 Dec;45(12):2015–2039. doi: 10.1139/o67-235. [DOI] [PubMed] [Google Scholar]
  18. Ishikawa H., Maeda T., Hikita H., Miyatake K. The computerized derivation of rate equations for enzyme reactions on the basis of the pseudo-steady-state assumption and the rapid-equilibrium assumption. Biochem J. 1988 Apr 1;251(1):175–181. doi: 10.1042/bj2510175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kessler M., Semenza G. The small-intestinal Na+, D-glucose cotransporter: an asymmetric gated channel (or pore) responsive to delta psi. J Membr Biol. 1983;76(1):27–56. doi: 10.1007/BF01871452. [DOI] [PubMed] [Google Scholar]
  20. Kimmich G. A. Membrane potentials and the mechanism of intestinal Na(+)-dependent sugar transport. J Membr Biol. 1990 Mar;114(1):1–27. doi: 10.1007/BF01869381. [DOI] [PubMed] [Google Scholar]
  21. Kimmich G. A., Randles J. Evidence for an intestinal Na+:sugar transport coupling stoichiometry of 2.0. Biochim Biophys Acta. 1980 Mar 13;596(3):439–444. doi: 10.1016/0005-2736(80)90131-5. [DOI] [PubMed] [Google Scholar]
  22. Kimmich G. A., Randles J. Na+-coupled sugar transport: membrane potential-dependent Km and Ki for Na+. Am J Physiol. 1988 Oct;255(4 Pt 1):C486–C494. doi: 10.1152/ajpcell.1988.255.4.C486. [DOI] [PubMed] [Google Scholar]
  23. Koepsell H., Fritzsch G., Korn K., Madrala A. Two substrate sites in the renal Na(+)-D-glucose cotransporter studied by model analysis of phlorizin binding and D-glucose transport measurements. J Membr Biol. 1990 Mar;114(2):113–132. doi: 10.1007/BF01869093. [DOI] [PubMed] [Google Scholar]
  24. Koepsell H., Spangenberg J. Function and presumed molecular structure of Na(+)-D-glucose cotransport systems. J Membr Biol. 1994 Feb;138(1):1–11. doi: 10.1007/BF00211064. [DOI] [PubMed] [Google Scholar]
  25. Koshland D. E., Jr, Némethy G., Filmer D. Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry. 1966 Jan;5(1):365–385. doi: 10.1021/bi00865a047. [DOI] [PubMed] [Google Scholar]
  26. Lee W. S., Kanai Y., Wells R. G., Hediger M. A. The high affinity Na+/glucose cotransporter. Re-evaluation of function and distribution of expression. J Biol Chem. 1994 Apr 22;269(16):12032–12039. [PubMed] [Google Scholar]
  27. Levitzki A. Quantitative aspects of allosteric mechanisms. Mol Biol Biochem Biophys. 1978;28:i-viii, 1-106. doi: 10.1007/978-3-642-81231-6. [DOI] [PubMed] [Google Scholar]
  28. Loo D. D., Hazama A., Supplisson S., Turk E., Wright E. M. Relaxation kinetics of the Na+/glucose cotransporter. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5767–5771. doi: 10.1073/pnas.90.12.5767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Läuger P., Jauch P. Microscopic description of voltage effects on ion-driven cotransport systems. J Membr Biol. 1986;91(3):275–284. doi: 10.1007/BF01868820. [DOI] [PubMed] [Google Scholar]
  30. Moran A., Davis L. J., Turner R. J. High affinity phlorizin binding to the LLC-PK1 cells exhibits a sodium:phlorizin stoichiometry of 2:1. J Biol Chem. 1988 Jan 5;263(1):187–192. [PubMed] [Google Scholar]
  31. Otsu K., Kinsella J. L., Koh E., Froehlich J. P. Proton dependence of the partial reactions of the sodium-proton exchanger in renal brush border membranes. J Biol Chem. 1992 Apr 25;267(12):8089–8096. [PubMed] [Google Scholar]
  32. Otsu K., Kinsella J., Sacktor B., Froehlich J. P. Transient state kinetic evidence for an oligomer in the mechanism of Na+-H+ exchange. Proc Natl Acad Sci U S A. 1989 Jul;86(13):4818–4822. doi: 10.1073/pnas.86.13.4818. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Oulianova N., Berteloot A. Sugar transport heterogeneity in the kidney: two independent transporters or different transport modes through an oligomeric Protein? 1. Glucose transport studies. J Membr Biol. 1996 Oct;153(3):181–194. doi: 10.1007/s002329900121. [DOI] [PubMed] [Google Scholar]
  34. Parent L., Supplisson S., Loo D. D., Wright E. M. Electrogenic properties of the cloned Na+/glucose cotransporter: I. Voltage-clamp studies. J Membr Biol. 1992 Jan;125(1):49–62. doi: 10.1007/BF00235797. [DOI] [PubMed] [Google Scholar]
  35. Parent L., Supplisson S., Loo D. D., Wright E. M. Electrogenic properties of the cloned Na+/glucose cotransporter: II. A transport model under nonrapid equilibrium conditions. J Membr Biol. 1992 Jan;125(1):63–79. doi: 10.1007/BF00235798. [DOI] [PubMed] [Google Scholar]
  36. Peerce B. E., Wright E. M. Distance between substrate sites on the Na-glucose cotransporter by fluorescence energy transfer. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8092–8096. doi: 10.1073/pnas.83.21.8092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Peerce B. E., Wright E. M. Evidence for tyrosyl residues at the Na+ site on the intestinal Na+/glucose cotransporter. J Biol Chem. 1985 May 25;260(10):6026–6031. [PubMed] [Google Scholar]
  38. Peerce B. E., Wright E. M. Sodium-induced conformational changes in the glucose transporter of intestinal brush borders. J Biol Chem. 1984 Nov 25;259(22):14105–14112. [PubMed] [Google Scholar]
  39. Restrepo D., Kimmich G. A. Kinetic analysis of mechanism of intestinal Na+-dependent sugar transport. Am J Physiol. 1985 May;248(5 Pt 1):C498–C509. doi: 10.1152/ajpcell.1985.248.5.C498. [DOI] [PubMed] [Google Scholar]
  40. Restrepo D., Kimmich G. A. Phlorizin binding to isolated enterocytes: membrane potential and sodium dependence. J Membr Biol. 1986;89(3):269–280. doi: 10.1007/BF01870669. [DOI] [PubMed] [Google Scholar]
  41. Restrepo D., Kimmich G. A. The mechanistic nature of the membrane potential dependence of sodium-sugar cotransport in small intestine. J Membr Biol. 1985;87(2):159–172. doi: 10.1007/BF01870662. [DOI] [PubMed] [Google Scholar]
  42. Rhoads D. G., Pring M. The simulation and analysis by digital computer of biochemical systems in terms of kinetic models. IV. Automatic derivation of enzymic rate laws. J Theor Biol. 1968 Sep;20(3):297–313. doi: 10.1016/0022-5193(68)90130-6. [DOI] [PubMed] [Google Scholar]
  43. Sanders D., Hansen U. P., Gradmann D., Slayman C. L. Generalized kinetic analysis of ion-driven cotransport systems: a unified interpretation of selective ionic effects on Michaelis parameters. J Membr Biol. 1984;77(2):123–152. doi: 10.1007/BF01925862. [DOI] [PubMed] [Google Scholar]
  44. Schultz S. G., Curran P. F. Coupled transport of sodium and organic solutes. Physiol Rev. 1970 Oct;50(4):637–718. doi: 10.1152/physrev.1970.50.4.637. [DOI] [PubMed] [Google Scholar]
  45. Semenza G., Kessler M., Hosang M., Weber J., Schmidt U. Biochemistry of the Na+, D-glucose cotransporter of the small-intestinal brush-border membrane. The state of the art in 1984. Biochim Biophys Acta. 1984 Sep 3;779(3):343–379. doi: 10.1016/0304-4157(84)90016-9. [DOI] [PubMed] [Google Scholar]
  46. Semenza G., Kessler M., Schmidt U., Venter J. C., Fraser C. M. The small-intestinal sodium-glucose cotransporter(s). Ann N Y Acad Sci. 1985;456:83–96. doi: 10.1111/j.1749-6632.1985.tb14848.x. [DOI] [PubMed] [Google Scholar]
  47. Smith-Maxwell C., Bennett E., Randles J., Kimmich G. A. Whole cell recording of sugar-induced currents in LLC-PK1 cells. Am J Physiol. 1990 Feb;258(2 Pt 1):C234–C242. doi: 10.1152/ajpcell.1990.258.2.C234. [DOI] [PubMed] [Google Scholar]
  48. Stevens B. R., Fernandez A., Hirayama B., Wright E. M., Kempner E. S. Intestinal brush border membrane Na+/glucose cotransporter functions in situ as a homotetramer. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1456–1460. doi: 10.1073/pnas.87.4.1456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Su A., Mager S., Mayo S. L., Lester H. A. A multi-substrate single-file model for ion-coupled transporters. Biophys J. 1996 Feb;70(2):762–777. doi: 10.1016/S0006-3495(96)79616-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Takahashi M., Malathi P., Preiser H., Jung C. Y. Radiation inactivation studies on the rabbit kidney sodium-dependent glucose transporter. J Biol Chem. 1985 Sep 5;260(19):10551–10556. [PubMed] [Google Scholar]
  51. Turner R. J., Kempner E. S. Radiation inactivation studies of the renal brush-border membrane phlorizin-binding protein. J Biol Chem. 1982 Sep 25;257(18):10794–10797. [PubMed] [Google Scholar]
  52. Turner R. J. Kinetic analysis of a family of cotransport models. Biochim Biophys Acta. 1981 Dec 7;649(2):269–280. doi: 10.1016/0005-2736(81)90415-6. [DOI] [PubMed] [Google Scholar]
  53. Turner R. J. Quantitative studies of cotransport systems: models and vesicles. J Membr Biol. 1983;76(1):1–15. doi: 10.1007/BF01871450. [DOI] [PubMed] [Google Scholar]
  54. Ugolev A. M., Metel'skii S. T. Two-channel transporter versus a single-channel Na+-dependent transporter for glucose and amino acids in rat and turtle. Biomed Sci. 1990;1(6):578–584. [PubMed] [Google Scholar]
  55. Wierzbicki W., Berteloot A., Roy G. Presteady-state kinetics and carrier-mediated transport: a theoretical analysis. J Membr Biol. 1990 Jul;117(1):11–27. doi: 10.1007/BF01871562. [DOI] [PubMed] [Google Scholar]
  56. Wright E. M. The intestinal Na+/glucose cotransporter. Annu Rev Physiol. 1993;55:575–589. doi: 10.1146/annurev.ph.55.030193.003043. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES