Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Feb;74(2 Pt 1):879–891. doi: 10.1016/S0006-3495(98)74011-1

Molecular order and dynamics in bilayers consisting of highly polyunsaturated phospholipids.

D C Mitchell 1, B J Litman 1
PMCID: PMC1302567  PMID: 9533699

Abstract

The time-resolved fluorescence emission and decay of fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH) was used to characterize equilibrium and dynamic bilayer structural properties of symmetrically substituted phosphatidylcholines (PCs) with acyl chains containing no, one, four, or six double bonds and mixed-chain phosphatidylcholines with a saturated sn-1 chain and one, four, or six double bonds in the sn-2 chain. Both the Brownian rotational diffusion (BRD) model and the wobble-in-cone model were fit to all differential polarization data, and the descriptions of the data provided by the BRD model were found to be statistically superior. Global analysis of differential polarization data revealed two statistically equivalent solutions. The solution corresponding to a bimodal orientational distribution function, f(theta), was selected based on the effects of temperature on f(theta) and previous measurements on fixed, oriented bilayers. The overall equilibrium acyl chain order in these bilayers was analyzed by comparing the orientational probability distribution for DPH, f(theta) sin theta, with a random orientational distribution. Orientational order decreased and probe dynamics increased in mixed-chain species as the unsaturation of the sn-2 chain was increased. The degree of orientational order dropped dramatically in the dipolyunsaturated species compared with the mixed-chain phosphatidylcholines, which contained a polyunsaturated sn-2 chain. In terms of both orientational order and probe dynamics, the differences between the highly polyunsaturated species and the monounsaturated species were much greater than the differences between the monounsaturated species and a disaturated PC.

Full Text

The Full Text of this article is available as a PDF (138.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alcala J. R., Gratton E., Prendergast F. G. Resolvability of fluorescence lifetime distributions using phase fluorometry. Biophys J. 1987 Apr;51(4):587–596. doi: 10.1016/S0006-3495(87)83383-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ameloot M., Hendrickx H., Herreman W., Pottel H., Van Cauwelaert F., van der Meer W. Effect of orientational order on the decay of the fluorescence anisotropy in membrane suspensions. Experimental verification on unilamellar vesicles and lipid/alpha-lactalbumin complexes. Biophys J. 1984 Oct;46(4):525–539. doi: 10.1016/S0006-3495(84)84050-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bernsdorff C., Wolf A., Winter R., Gratton E. Effect of hydrostatic pressure on water penetration and rotational dynamics in phospholipid-cholesterol bilayers. Biophys J. 1997 Mar;72(3):1264–1277. doi: 10.1016/S0006-3495(97)78773-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen L. A., Dale R. E., Roth S., Brand L. Nanosecond time-dependent fluorescence depolarization of diphenylhexatriene in dimyristoyllecithin vesicles and the determination of "microviscosity". J Biol Chem. 1977 Apr 10;252(7):2163–2169. [PubMed] [Google Scholar]
  5. Deinum G., van Langen H., van Ginkel G., Levine Y. K. Molecular order and dynamics in planar lipid bilayers: effects of unsaturation and sterols. Biochemistry. 1988 Feb 9;27(3):852–860. doi: 10.1021/bi00403a003. [DOI] [PubMed] [Google Scholar]
  6. Hernandez-Borrell J., Keough K. M. Heteroacid phosphatidylcholines with different amounts of unsaturation respond differently to cholesterol. Biochim Biophys Acta. 1993 Dec 12;1153(2):277–282. doi: 10.1016/0005-2736(93)90416-w. [DOI] [PubMed] [Google Scholar]
  7. Holte L. L., Peter S. A., Sinnwell T. M., Gawrisch K. 2H nuclear magnetic resonance order parameter profiles suggest a change of molecular shape for phosphatidylcholines containing a polyunsaturated acyl chain. Biophys J. 1995 Jun;68(6):2396–2403. doi: 10.1016/S0006-3495(95)80422-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Huster D., Jin A. J., Arnold K., Gawrisch K. Water permeability of polyunsaturated lipid membranes measured by 17O NMR. Biophys J. 1997 Aug;73(2):855–864. doi: 10.1016/S0006-3495(97)78118-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Iioka H., Moriyama I., Akazaki M., Oku M., Itoh K., Hino K., Okamura Y., Itani Y., Katoh Y., Ichijo M. [The study on human placental DHA-S transport mechanism (using placental microvillous membrane vesicles)]. Nihon Sanka Fujinka Gakkai Zasshi. 1987 Oct;39(10):1756–1760. [PubMed] [Google Scholar]
  10. Johnson M. L., Faunt L. M. Parameter estimation by least-squares methods. Methods Enzymol. 1992;210:1–37. doi: 10.1016/0076-6879(92)10003-v. [DOI] [PubMed] [Google Scholar]
  11. Kariel N., Davidson E., Keough K. M. Cholesterol does not remove the gel-liquid crystalline phase transition of phosphatidylcholines containing two polyenoic acyl chains. Biochim Biophys Acta. 1991 Feb 11;1062(1):70–76. doi: 10.1016/0005-2736(91)90336-7. [DOI] [PubMed] [Google Scholar]
  12. Kinosita K., Jr, Kawato S., Ikegami A. A theory of fluorescence polarization decay in membranes. Biophys J. 1977 Dec;20(3):289–305. doi: 10.1016/S0006-3495(77)85550-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lafleur M., Fine B., Sternin E., Cullis P. R., Bloom M. Smoothed orientational order profile of lipid bilayers by 2H-nuclear magnetic resonance. Biophys J. 1989 Nov;56(5):1037–1041. doi: 10.1016/S0006-3495(89)82749-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lakowicz J. R., Cherek H., Balter A. Correction of timing errors in photomultiplier tubes used in phase-modulation fluorometry. J Biochem Biophys Methods. 1981 Sep;5(3):131–146. doi: 10.1016/0165-022x(81)90012-9. [DOI] [PubMed] [Google Scholar]
  15. Lentz B. R. Use of fluorescent probes to monitor molecular order and motions within liposome bilayers. Chem Phys Lipids. 1993 Sep;64(1-3):99–116. doi: 10.1016/0009-3084(93)90060-g. [DOI] [PubMed] [Google Scholar]
  16. Litman B. J., Lewis E. N., Levin I. W. Packing characteristics of highly unsaturated bilayer lipids: Raman spectroscopic studies of multilamellar phosphatidylcholine dispersions. Biochemistry. 1991 Jan 15;30(2):313–319. doi: 10.1021/bi00216a001. [DOI] [PubMed] [Google Scholar]
  17. Litman B. J., Mitchell D. C. A role for phospholipid polyunsaturation in modulating membrane protein function. Lipids. 1996 Mar;31 (Suppl):S193–S197. doi: 10.1007/BF02637075. [DOI] [PubMed] [Google Scholar]
  18. Miljanich G. P., Sklar L. A., White D. L., Dratz E. A. Disaturated and dipolyunsaturated phospholipids in the bovine retinal rod outer segment disk membrane. Biochim Biophys Acta. 1979 Apr 4;552(2):294–306. doi: 10.1016/0005-2736(79)90284-0. [DOI] [PubMed] [Google Scholar]
  19. Mitchell D. C., Straume M., Litman B. J. Role of sn-1-saturated,sn-2-polyunsaturated phospholipids in control of membrane receptor conformational equilibrium: effects of cholesterol and acyl chain unsaturation on the metarhodopsin I in equilibrium with metarhodopsin II equilibrium. Biochemistry. 1992 Jan 28;31(3):662–670. doi: 10.1021/bi00118a005. [DOI] [PubMed] [Google Scholar]
  20. Mitchell D. C., Straume M., Miller J. L., Litman B. J. Modulation of metarhodopsin formation by cholesterol-induced ordering of bilayer lipids. Biochemistry. 1990 Oct 2;29(39):9143–9149. doi: 10.1021/bi00491a007. [DOI] [PubMed] [Google Scholar]
  21. Muller J. M., van Ginkel G., van Faassen E. E. Effect of lipid molecular structure and gramicidin A on the core of lipid vesicle bilayers. A time-resolved fluorescence depolarization study. Biochemistry. 1996 Jan 16;35(2):488–497. doi: 10.1021/bi951409h. [DOI] [PubMed] [Google Scholar]
  22. Needham D., Nunn R. S. Elastic deformation and failure of lipid bilayer membranes containing cholesterol. Biophys J. 1990 Oct;58(4):997–1009. doi: 10.1016/S0006-3495(90)82444-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Niebylski C. D., Salem N., Jr A calorimetric investigation of a series of mixed-chain polyunsaturated phosphatidylcholines: effect of sn-2 chain length and degree of unsaturation. Biophys J. 1994 Dec;67(6):2387–2393. doi: 10.1016/S0006-3495(94)80725-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Stinson A. M., Wiegand R. D., Anderson R. E. Fatty acid and molecular species compositions of phospholipids and diacylglycerols from rat retinal membranes. Exp Eye Res. 1991 Feb;52(2):213–218. doi: 10.1016/0014-4835(91)90261-c. [DOI] [PubMed] [Google Scholar]
  25. Straume M., Litman B. J. Equilibrium and dynamic bilayer structural properties of unsaturated acyl chain phosphatidylcholine-cholesterol-rhodopsin recombinant vesicles and rod outer segment disk membranes as determined from higher order analysis of fluorescence anisotropy decay. Biochemistry. 1988 Oct 4;27(20):7723–7733. doi: 10.1021/bi00420a022. [DOI] [PubMed] [Google Scholar]
  26. Straume M., Litman B. J. Equilibrium and dynamic structure of large, unilamellar, unsaturated acyl chain phosphatidylcholine vesicles. Higher order analysis of 1,6-diphenyl-1,3,5-hexatriene and 1-[4-(trimethylammonio)phenyl]- 6-phenyl-1,3,5-hexatriene anisotropy decay. Biochemistry. 1987 Aug 11;26(16):5113–5120. doi: 10.1021/bi00390a033. [DOI] [PubMed] [Google Scholar]
  27. Straume M., Litman B. J. Influence of cholesterol on equilibrium and dynamic bilayer structure of unsaturated acyl chain phosphatidylcholine vesicles as determined from higher order analysis of fluorescence anisotropy decay. Biochemistry. 1987 Aug 11;26(16):5121–5126. doi: 10.1021/bi00390a034. [DOI] [PubMed] [Google Scholar]
  28. Thurmond R. L., Niemi A. R., Lindblom G., Wieslander A., Rilfors L. Membrane thickness and molecular ordering in Acholeplasma laidlawii strain A studied by 2H NMR spectroscopy. Biochemistry. 1994 Nov 15;33(45):13178–13188. doi: 10.1021/bi00249a004. [DOI] [PubMed] [Google Scholar]
  29. Toptygin D., Brand L. Fluorescence decay of DPH in lipid membranes: influence of the external refractive index. Biophys Chem. 1993 Dec;48(2):205–220. doi: 10.1016/0301-4622(93)85011-6. [DOI] [PubMed] [Google Scholar]
  30. Wang S., Beechem J. M., Gratton E., Glaser M. Orientational distribution of 1,6-diphenyl-1,3,5-hexatriene in phospholipid vesicles as determined by global analysis of frequency domain fluorimetry data. Biochemistry. 1991 Jun 4;30(22):5565–5572. doi: 10.1021/bi00236a032. [DOI] [PubMed] [Google Scholar]
  31. Zerouga M., Jenski L. J., Stillwell W. Comparison of phosphatidylcholines containing one or two docosahexaenoic acyl chains on properties of phospholipid monolayers and bilayers. Biochim Biophys Acta. 1995 Jun 14;1236(2):266–272. doi: 10.1016/0005-2736(95)00058-b. [DOI] [PubMed] [Google Scholar]
  32. van Ginkel G., van Langen H., Levine Y. K. The membrane fluidity concept revisited by polarized fluorescence spectroscopy on different model membranes containing unsaturated lipids and sterols. Biochimie. 1989 Jan;71(1):23–32. doi: 10.1016/0300-9084(89)90127-2. [DOI] [PubMed] [Google Scholar]
  33. van Langen H., van Ginkel G., Shaw D., Levine Y. K. The fidelity of response by 1-[4-(trimethylammonio)phenyl]-6-phenyl-1,3,5-hexatriene in time-resolved fluorescence anisotropy measurements on lipid vesicles. Effects of unsaturation, headgroup and cholesterol on orientational order and reorientational dynamics. Eur Biophys J. 1989;17(1):37–48. doi: 10.1007/BF00257144. [DOI] [PubMed] [Google Scholar]
  34. van der Meer W., Pottel H., Herreman W., Ameloot M., Hendrickx H., Schröder H. Effect of orientational order on the decay of the fluorescence anisotropy in membrane suspensions. A new approximate solution of the rotational diffusion equation. Biophys J. 1984 Oct;46(4):515–523. doi: 10.1016/S0006-3495(84)84049-7. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES