Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Feb;74(2 Pt 1):910–917. doi: 10.1016/S0006-3495(98)74014-7

Polarity profiles in oriented and dispersed phosphatidylcholine bilayers are different: an electron spin resonance study.

M Ge 1, J H Freed 1
PMCID: PMC1302570  PMID: 9533702

Abstract

A novel method was utilized to accurately measure the z- component of the nuclear hyperfine interaction tensor, Azz, of a chain-labeled lipid, 16PC, and a headgroup-labeled lipid, dipalmitoylphosphatidyl-tempocholine (DPPTC), in macroscopically oriented dipalmitoylphosphatidylcholine (DPPC) and dimyristoylphosphatidylcholine (DMPC) membranes, which were compared with the Azz values of the two labels in dispersions of the same lipids in the gel phase. We found that the Azz values of 16PC (DPPTC) in the oriented DPPC and DMPC bilayers are approximately 1 Gauss smaller (greater) than in the corresponding dispersions. These results indicate that the headgroup region is more polar in macroscopically oriented bilayers than in dispersions, whereas in the chain region, the order in polarity is reversed. This is consistent with previous results on partial molar volumes in the liquid-crystal phase. Differences in the morphology of the macroscopically oriented and dispersed bilayers, which might be responsible, are discussed. Nonlinear least-squares fits of the electron spin resonance spectra of DPPTC in DPPC show that there is a substantial orienting potential in the headgroup region of dispersions that is lipid phase dependent. However, in oriented membrane samples hydrated in 100% relative humidity, this orienting potential is very weak.

Full Text

The Full Text of this article is available as a PDF (93.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altenbach C., Greenhalgh D. A., Khorana H. G., Hubbell W. L. A collision gradient method to determine the immersion depth of nitroxides in lipid bilayers: application to spin-labeled mutants of bacteriorhodopsin. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1667–1671. doi: 10.1073/pnas.91.5.1667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brouillette C. G., Segrest J. P., Ng T. C., Jones J. L. Minimal size phosphatidylcholine vesicles: effects of radius of curvature on head group packing and conformation. Biochemistry. 1982 Sep 14;21(19):4569–4575. doi: 10.1021/bi00262a009. [DOI] [PubMed] [Google Scholar]
  3. Dill K. A., Flory P. J. Molecular organization in micelles and vesicles. Proc Natl Acad Sci U S A. 1981 Feb;78(2):676–680. doi: 10.1073/pnas.78.2.676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Earle K. A., Moscicki J. K., Ge M., Budil D. E., Freed J. H. 250-GHz electron spin resonance studies of polarity gradients along the aliphatic chains in phospholipid membranes. Biophys J. 1994 Apr;66(4):1213–1221. doi: 10.1016/S0006-3495(94)80905-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ge M., Budil D. E., Freed J. H. ESR studies of spin-labeled membranes aligned by isopotential spin-dry ultracentrifugation: lipid-protein interactions. Biophys J. 1994 Dec;67(6):2326–2344. doi: 10.1016/S0006-3495(94)80719-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ge M., Freed J. H. An electron spin resonance study of interactions between gramicidin A' and phosphatidylcholine bilayers. Biophys J. 1993 Nov;65(5):2106–2123. doi: 10.1016/S0006-3495(93)81255-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Griffith O. H., Dehlinger P. J., Van S. P. Shape of the hydrophobic barrier of phospholipid bilayers (evidence for water penetration in biological membranes). J Membr Biol. 1974;15(2):159–192. doi: 10.1007/BF01870086. [DOI] [PubMed] [Google Scholar]
  8. Ho C., Kelly M. B., Stubbs C. D. The effects of phospholipid unsaturation and alcohol perturbation at the protein/lipid interface probed using fluorophore lifetime heterogeneity. Biochim Biophys Acta. 1994 Aug 3;1193(2):307–315. doi: 10.1016/0005-2736(94)90167-8. [DOI] [PubMed] [Google Scholar]
  9. Patyal B. R., Crepeau R. H., Freed J. H. Lipid-gramicidin interactions using two-dimensional Fourier-transform electron spin resonance. Biophys J. 1997 Oct;73(4):2201–2220. doi: 10.1016/S0006-3495(97)78252-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Shin Y. K., Freed J. H. Thermodynamics of phosphatidylcholine-cholesterol mixed model membranes in the liquid crystalline state studied by the orientational order parameter. Biophys J. 1989 Dec;56(6):1093–1100. doi: 10.1016/S0006-3495(89)82757-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Simon S. A., McIntosh T. J., Latorre R. Influence of cholesterol on water penetration into bilayers. Science. 1982 Apr 2;216(4541):65–67. doi: 10.1126/science.7063872. [DOI] [PubMed] [Google Scholar]
  12. White S. H., Jacobs R. E., King G. I. Partial specific volumes of lipid and water in mixtures of egg lecithin and water. Biophys J. 1987 Oct;52(4):663–665. doi: 10.1016/S0006-3495(87)83259-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. White S. H., King G. I. Molecular packing and area compressibility of lipid bilayers. Proc Natl Acad Sci U S A. 1985 Oct;82(19):6532–6536. doi: 10.1073/pnas.82.19.6532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Wiener M. C., White S. H. Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of x-ray and neutron diffraction data. III. Complete structure. Biophys J. 1992 Feb;61(2):434–447. doi: 10.1016/S0006-3495(92)81849-0. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES