Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Feb;74(2 Pt 1):918–930. doi: 10.1016/S0006-3495(98)74015-9

A new "gel-like" phase in dodecyl maltoside-lipid mixtures: implications in solubilization and reconstitution studies.

O Lambert 1, D Levy 1, J L Ranck 1, G Leblanc 1, J L Rigaud 1
PMCID: PMC1302571  PMID: 9533703

Abstract

The interaction of dodecyl maltoside with lipids was investigated through the studies of solubilization and reconstitution processes. The solubilization of large unilamellar liposomes was analyzed through changes in turbidity and cryo-transmission electron microscopy. Solubilization was well described by the three-stage model previously reported for other detergents, and the critical detergent/phospholipid ratios at which lamellar-to-micellar transition occurred (Rsat = 1 mol/mol) and finished (Rsol = 1.6 mol/mol) were determined. The vesicle-micelle transition was further observed in the vitrified hydrated state by cryo-transmission electron microscopy. A striking feature of the solubilization process by dodecyl maltoside was the discovery of a new phase consisting of a very viscous "gel-like" sample. It is shown that this equilibrium cohesive phase is composed of long filamentous thread-like micelles, over microns in length. Similar structures were observed upon solubilization of sonicated liposomes, multilamellar liposomes, or biological Ca2+ ATPase membranes. This "gel-like" phase was also visualized during the process of liposome reconstitution after detergent removal from lipid-dodecyl maltoside micelles. The rate of detergent removal, controlled through the use of SM2 Bio-Beads, was demonstrated to drastically influence the morphology of reconstituted liposomes with a propensity for multilamellar liposome formation upon slow transition through the "gel-like" phase. Finally, on the basis of these observations, the mechanisms of dodecyl maltoside-mediated reconstitution of bacteriorhodopsin were analyzed, and optimal conditions for reconstitution were defined.

Full Text

The Full Text of this article is available as a PDF (782.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Almog S., Litman B. J., Wimley W., Cohen J., Wachtel E. J., Barenholz Y., Ben-Shaul A., Lichtenberg D. States of aggregation and phase transformations in mixtures of phosphatidylcholine and octyl glucoside. Biochemistry. 1990 May 15;29(19):4582–4592. doi: 10.1021/bi00471a012. [DOI] [PubMed] [Google Scholar]
  2. Brandolin G., Le Saux A., Trezeguet V., Vignais P. V., Lauquin G. J. Biochemical characterisation of the isolated Anc2 adenine nucleotide carrier from Saccharomyces cerevisiae mitochondria. Biochem Biophys Res Commun. 1993 Apr 15;192(1):143–150. doi: 10.1006/bbrc.1993.1393. [DOI] [PubMed] [Google Scholar]
  3. Buchanan S. K., Walker J. E. Large-scale chromatographic purification of F1F0-ATPase and complex I from bovine heart mitochondria. Biochem J. 1996 Aug 15;318(Pt 1):343–349. doi: 10.1042/bj3180343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cladera J., Rigaud J. L., Villaverde J., Duñach M. Liposome solubilization and membrane protein reconstitution using Chaps and Chapso. Eur J Biochem. 1997 Feb 1;243(3):798–804. doi: 10.1111/j.1432-1033.1997.00798.x. [DOI] [PubMed] [Google Scholar]
  5. Danino D., Kaplun A., Lindblom G., Rilfors L., Orädd G., Hauksson J. B., Talmon Y. Cryo-TEM and NMR studies of a micelle-forming phosphoglucolipid from membranes of Acholeplasma laidlawii A and B. Chem Phys Lipids. 1997 Jan 17;85(1):75–89. doi: 10.1016/s0009-3084(96)02640-0. [DOI] [PubMed] [Google Scholar]
  6. Dolder M., Engel A., Zulauf M. The micelle to vesicle transition of lipids and detergents in the presence of a membrane protein: towards a rationale for 2D crystallization. FEBS Lett. 1996 Mar 11;382(1-2):203–208. doi: 10.1016/0014-5793(96)00180-9. [DOI] [PubMed] [Google Scholar]
  7. Groth G., Walker J. E. ATP synthase from bovine heart mitochondria: reconstitution into unilamellar phospholipid vesicles of the pure enzyme in a functional state. Biochem J. 1996 Aug 15;318(Pt 1):351–357. doi: 10.1042/bj3180351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gulik-Krzywicki T., Seigneuret M., Rigaud J. L. Monomer-oligomer equilibrium of bacteriorhodopsin in reconstituted proteoliposomes. A freeze-fracture electron microscope study. J Biol Chem. 1987 Nov 15;262(32):15580–15588. [PubMed] [Google Scholar]
  9. Helenius A., Simons K. Solubilization of membranes by detergents. Biochim Biophys Acta. 1975 Mar 25;415(1):29–79. doi: 10.1016/0304-4157(75)90016-7. [DOI] [PubMed] [Google Scholar]
  10. Holloway P. W. A simple procedure for removal of Triton X-100 from protein samples. Anal Biochem. 1973 May;53(1):304–308. doi: 10.1016/0003-2697(73)90436-3. [DOI] [PubMed] [Google Scholar]
  11. Jackson M. L., Schmidt C. F., Lichtenberg D., Litman B. J., Albert A. D. Solubilization of phosphatidylcholine bilayers by octyl glucoside. Biochemistry. 1982 Sep 14;21(19):4576–4582. doi: 10.1021/bi00262a010. [DOI] [PubMed] [Google Scholar]
  12. Kragh-Hansen U., le Maire M., Nöel J. P., Gulik-Krzywicki T., Møller J. V. Transitional steps in the solubilization of protein-containing membranes and liposomes by nonionic detergent. Biochemistry. 1993 Feb 16;32(6):1648–1656. doi: 10.1021/bi00057a032. [DOI] [PubMed] [Google Scholar]
  13. Kühlbrandt W. Two-dimensional crystallization of membrane proteins. Q Rev Biophys. 1992 Feb;25(1):1–49. doi: 10.1017/s0033583500004716. [DOI] [PubMed] [Google Scholar]
  14. Lasic D. D. The mechanism of vesicle formation. Biochem J. 1988 Nov 15;256(1):1–11. doi: 10.1042/bj2560001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Levy D., Gulik A., Seigneuret M., Rigaud J. L. Phospholipid vesicle solubilization and reconstitution by detergents. Symmetrical analysis of the two processes using octaethylene glycol mono-n-dodecyl ether. Biochemistry. 1990 Oct 9;29(40):9480–9488. doi: 10.1021/bi00492a022. [DOI] [PubMed] [Google Scholar]
  16. Lichtenberg D. Characterization of the solubilization of lipid bilayers by surfactants. Biochim Biophys Acta. 1985 Dec 19;821(3):470–478. doi: 10.1016/0005-2736(85)90052-5. [DOI] [PubMed] [Google Scholar]
  17. Lévy D., Bluzat A., Seigneuret M., Rigaud J. L. A systematic study of liposome and proteoliposome reconstitution involving Bio-Bead-mediated Triton X-100 removal. Biochim Biophys Acta. 1990 Jun 27;1025(2):179–190. doi: 10.1016/0005-2736(90)90096-7. [DOI] [PubMed] [Google Scholar]
  18. Lévy D., Gulik A., Bluzat A., Rigaud J. L. Reconstitution of the sarcoplasmic reticulum Ca(2+)-ATPase: mechanisms of membrane protein insertion into liposomes during reconstitution procedures involving the use of detergents. Biochim Biophys Acta. 1992 Jun 30;1107(2):283–298. doi: 10.1016/0005-2736(92)90415-i. [DOI] [PubMed] [Google Scholar]
  19. Oesterhelt D., Stoeckenius W. Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane. Methods Enzymol. 1974;31:667–678. doi: 10.1016/0076-6879(74)31072-5. [DOI] [PubMed] [Google Scholar]
  20. Oesterhelt D., Tittor J., Bamberg E. A unifying concept for ion translocation by retinal proteins. J Bioenerg Biomembr. 1992 Apr;24(2):181–191. doi: 10.1007/BF00762676. [DOI] [PubMed] [Google Scholar]
  21. Ollivon M., Eidelman O., Blumenthal R., Walter A. Micelle-vesicle transition of egg phosphatidylcholine and octyl glucoside. Biochemistry. 1988 Mar 8;27(5):1695–1703. doi: 10.1021/bi00405a047. [DOI] [PubMed] [Google Scholar]
  22. Paternostre M. T., Roux M., Rigaud J. L. Mechanisms of membrane protein insertion into liposomes during reconstitution procedures involving the use of detergents. 1. Solubilization of large unilamellar liposomes (prepared by reverse-phase evaporation) by triton X-100, octyl glucoside, and sodium cholate. Biochemistry. 1988 Apr 19;27(8):2668–2677. doi: 10.1021/bi00408a006. [DOI] [PubMed] [Google Scholar]
  23. Pitard B., Richard P., Duñach M., Girault G., Rigaud J. L. ATP synthesis by the F0F1 ATP synthase from thermophilic Bacillus PS3 reconstituted into liposomes with bacteriorhodopsin. 1. Factors defining the optimal reconstitution of ATP synthases with bacteriorhodopsin. Eur J Biochem. 1996 Feb 1;235(3):769–778. doi: 10.1111/j.1432-1033.1996.00769.x. [DOI] [PubMed] [Google Scholar]
  24. Pourcher T., Leclercq S., Brandolin G., Leblanc G. Melibiose permease of Escherichia coli: large scale purification and evidence that H+, Na+, and Li+ sugar symport is catalyzed by a single polypeptide. Biochemistry. 1995 Apr 4;34(13):4412–4420. doi: 10.1021/bi00013a033. [DOI] [PubMed] [Google Scholar]
  25. Rigaud J. L., Mosser G., Lacapere J. J., Olofsson A., Levy D., Ranck J. L. Bio-Beads: an efficient strategy for two-dimensional crystallization of membrane proteins. J Struct Biol. 1997 Apr;118(3):226–235. doi: 10.1006/jsbi.1997.3848. [DOI] [PubMed] [Google Scholar]
  26. Rigaud J. L., Paternostre M. T., Bluzat A. Mechanisms of membrane protein insertion into liposomes during reconstitution procedures involving the use of detergents. 2. Incorporation of the light-driven proton pump bacteriorhodopsin. Biochemistry. 1988 Apr 19;27(8):2677–2688. doi: 10.1021/bi00408a007. [DOI] [PubMed] [Google Scholar]
  27. Rigaud J. L., Pitard B., Levy D. Reconstitution of membrane proteins into liposomes: application to energy-transducing membrane proteins. Biochim Biophys Acta. 1995 Oct 10;1231(3):223–246. doi: 10.1016/0005-2728(95)00091-v. [DOI] [PubMed] [Google Scholar]
  28. Schurtenberger P., Mazer N., Waldvogel S., Känzig W. Preparation of monodisperse vesicles with variable size by dilution of mixed micellar solutions of bile salt and phosphatidylcholine. Biochim Biophys Acta. 1984 Aug 8;775(1):111–114. doi: 10.1016/0005-2736(84)90241-4. [DOI] [PubMed] [Google Scholar]
  29. Silvius J. R. Solubilization and functional reconstitution of biomembrane components. Annu Rev Biophys Biomol Struct. 1992;21:323–348. doi: 10.1146/annurev.bb.21.060192.001543. [DOI] [PubMed] [Google Scholar]
  30. Suarez M. D., Revzin A., Narlock R., Kempner E. S., Thompson D. A., Ferguson-Miller S. The functional and physical form of mammalian cytochrome c oxidase determined by gel filtration, radiation inactivation, and sedimentation equilibrium analysis. J Biol Chem. 1984 Nov 25;259(22):13791–13799. [PubMed] [Google Scholar]
  31. Vinson P. K., Talmon Y., Walter A. Vesicle-micelle transition of phosphatidylcholine and octyl glucoside elucidated by cryo-transmission electron microscopy. Biophys J. 1989 Oct;56(4):669–681. doi: 10.1016/S0006-3495(89)82714-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Walter A., Vinson P. K., Kaplun A., Talmon Y. Intermediate structures in the cholate-phosphatidylcholine vesicle-micelle transition. Biophys J. 1991 Dec;60(6):1315–1325. doi: 10.1016/S0006-3495(91)82169-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wenk M. R., Alt T., Seelig A., Seelig J. Octyl-beta-D-glucopyranoside partitioning into lipid bilayers: thermodynamics of binding and structural changes of the bilayer. Biophys J. 1997 Apr;72(4):1719–1731. doi: 10.1016/S0006-3495(97)78818-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wrigglesworth J. M., Wooster M. S., Elsden J., Danneel H. J. Dynamics of proteoliposome formation. Intermediate states during detergent dialysis. Biochem J. 1987 Sep 15;246(3):737–744. doi: 10.1042/bj2460737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. de la Maza A., Parra J. L. Solubilizing effects caused by the nonionic surfactant dodecylmaltoside in phosphatidylcholine liposomes. Biophys J. 1997 Apr;72(4):1668–1675. doi: 10.1016/S0006-3495(97)78812-X. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES