Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Feb;74(2 Pt 1):988–994. doi: 10.1016/S0006-3495(98)74022-6

Transmembrane helix stability: the effect of helix-helix interactions studied by Fourier transform infrared spectroscopy.

J Sturgis 1, B Robert 1, E Goormaghtigh 1
PMCID: PMC1302578  PMID: 9533710

Abstract

We have measured, using infrared spectroscopy, the hydrogen/deuterium exchange rates of the amide protons in the photosynthetic antenna of Rhodospirillum rubrum. These measurements were made not only on the intact protein in detergent solution but also on two dissociated forms (B820 and B777). We have, on the basis of our knowledge of the structure of this protein, been able to assign the various groups of amide protons that exchange with different time constants to distinct regions of the protein. The most protected group of protons that we observe exchanging with time constants near 6000 min we assign to the transmembrane helices. The slow exchange rates measured for the amide protons of the transmembrane helices of this protein in detergent solution may indicate a destabilization of the helices in detergent solution compared with the membrane. This group of protons is progressively destabilized by stepwise dissociation of the antenna protein, and this destabilization is greater than we can account for by increases in solvent accessibility. We suggest that the observed loss of amide proton protection in the transmembrane helices as they are dissociated might be due to an increase in the helix flexibility and breathing motions as interactions between helices are reduced.

Full Text

The Full Text of this article is available as a PDF (97.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvarez J., Lee D. C., Baldwin S. A., Chapman D. Fourier transform infrared spectroscopic study of the structure and conformational changes of the human erythrocyte glucose transporter. J Biol Chem. 1987 Mar 15;262(8):3502–3509. [PubMed] [Google Scholar]
  2. Ashikawa I., Yin J. J., Subczynski W. K., Kouyama T., Hyde J. S., Kusumi A. Molecular organization and dynamics in bacteriorhodopsin-rich reconstituted membranes: discrimination of lipid environments by the oxygen transport parameter using a pulse ESR spin-labeling technique. Biochemistry. 1994 Apr 26;33(16):4947–4952. doi: 10.1021/bi00182a025. [DOI] [PubMed] [Google Scholar]
  3. Chang M. C., Callahan P. M., Parkes-Loach P. S., Cotton T. M., Loach P. A. Spectroscopic characterization of the light-harvesting complex of Rhodospirillum rubrum and its structural subunit. Biochemistry. 1990 Jan 16;29(2):421–429. doi: 10.1021/bi00454a017. [DOI] [PubMed] [Google Scholar]
  4. Earnest T. N., Herzfeld J., Rothschild K. J. Polarized Fourier transform infrared spectroscopy of bacteriorhodopsin. Transmembrane alpha helices are resistant to hydrogen/deuterium exchange. Biophys J. 1990 Dec;58(6):1539–1546. doi: 10.1016/S0006-3495(90)82498-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Englander S. W., Mayne L. Protein folding studied using hydrogen-exchange labeling and two-dimensional NMR. Annu Rev Biophys Biomol Struct. 1992;21:243–265. doi: 10.1146/annurev.bb.21.060192.001331. [DOI] [PubMed] [Google Scholar]
  6. Goormaghtigh E., Cabiaux V., Ruysschaert J. M. Determination of soluble and membrane protein structure by Fourier transform infrared spectroscopy. II. Experimental aspects, side chain structure, and H/D exchange. Subcell Biochem. 1994;23:363–403. doi: 10.1007/978-1-4615-1863-1_9. [DOI] [PubMed] [Google Scholar]
  7. Goormaghtigh E., Cabiaux V., Ruysschaert J. M. Determination of soluble and membrane protein structure by Fourier transform infrared spectroscopy. III. Secondary structures. Subcell Biochem. 1994;23:405–450. doi: 10.1007/978-1-4615-1863-1_10. [DOI] [PubMed] [Google Scholar]
  8. Goormaghtigh E., Vigneron L., Scarborough G. A., Ruysschaert J. M. Tertiary conformational changes of the Neurospora crassa plasma membrane H(+)-ATPase monitored by hydrogen/deuterium exchange kinetics. A Fourier transformed infrared spectroscopy approach. J Biol Chem. 1994 Nov 4;269(44):27409–27413. [PubMed] [Google Scholar]
  9. Haris P. I., Chapman D., Benga G. A Fourier-transform infrared spectroscopic investigation of the hydrogen-deuterium exchange and secondary structure of the 28-kDa channel-forming integral membrane protein (CHIP28). Eur J Biochem. 1995 Oct 15;233(2):659–664. doi: 10.1111/j.1432-1033.1995.659_2.x. [DOI] [PubMed] [Google Scholar]
  10. Janiak M. J., Small D. M., Shipley G. G. Temperature and compositional dependence of the structure of hydrated dimyristoyl lecithin. J Biol Chem. 1979 Jul 10;254(13):6068–6078. [PubMed] [Google Scholar]
  11. Karrasch S., Bullough P. A., Ghosh R. The 8.5 A projection map of the light-harvesting complex I from Rhodospirillum rubrum reveals a ring composed of 16 subunits. EMBO J. 1995 Feb 15;14(4):631–638. doi: 10.1002/j.1460-2075.1995.tb07041.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Koepke J., Hu X., Muenke C., Schulten K., Michel H. The crystal structure of the light-harvesting complex II (B800-850) from Rhodospirillum molischianum. Structure. 1996 May 15;4(5):581–597. doi: 10.1016/s0969-2126(96)00063-9. [DOI] [PubMed] [Google Scholar]
  13. Ludlam C. F., Arkin I. T., Liu X. M., Rothman M. S., Rath P., Aimoto S., Smith S. O., Engelman D. M., Rothschild K. J. Fourier transform infrared spectroscopy and site-directed isotope labeling as a probe of local secondary structure in the transmembrane domain of phospholamban. Biophys J. 1996 Apr;70(4):1728–1736. doi: 10.1016/S0006-3495(96)79735-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Olsen J. D., Sturgis J. N., Westerhuis W. H., Fowler G. J., Hunter C. N., Robert B. Site-directed modification of the ligands to the bacteriochlorophylls of the light-harvesting LH1 and LH2 complexes of Rhodobacter sphaeroides. Biochemistry. 1997 Oct 14;36(41):12625–12632. doi: 10.1021/bi9710481. [DOI] [PubMed] [Google Scholar]
  15. Popot J. L., Engelman D. M. Membrane protein folding and oligomerization: the two-stage model. Biochemistry. 1990 May 1;29(17):4031–4037. doi: 10.1021/bi00469a001. [DOI] [PubMed] [Google Scholar]
  16. Raussens V., Narayanaswami V., Goormaghtigh E., Ryan R. O., Ruysschaert J. M. Hydrogen/deuterium exchange kinetics of apolipophorin-III in lipid-free and phospholipid-bound states. An analysis by Fourier transform infrared spectroscopy. J Biol Chem. 1996 Sep 20;271(38):23089–23095. doi: 10.1074/jbc.271.38.23089. [DOI] [PubMed] [Google Scholar]
  17. Sturgis J. N., Olsen J. D., Robert B., Hunter C. N. Functions of conserved tryptophan residues of the core light-harvesting complex of Rhodobacter sphaeroides. Biochemistry. 1997 Mar 11;36(10):2772–2778. doi: 10.1021/bi962524a. [DOI] [PubMed] [Google Scholar]
  18. Sturgis J. N., Robert B. Thermodynamics of membrane polypeptide oligomerization in light-harvesting complexes and associated structural changes. J Mol Biol. 1994 May 6;238(3):445–454. doi: 10.1006/jmbi.1994.1303. [DOI] [PubMed] [Google Scholar]
  19. de Jongh H. H., Goormaghtigh E., Ruysschaert J. M. The different molar absorptivities of the secondary structure types in the amide I region: an attenuated total reflection infrared study on globular proteins. Anal Biochem. 1996 Nov 1;242(1):95–103. doi: 10.1006/abio.1996.0434. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES