Abstract
Our previous demonstration that mutants of 5S rRNA called mof9 can specifically alter efficiencies of programmed ribosomal frameshifting (PRF) suggested a role for this ubiquitous molecule in the maintenance of translational reading frame, though the repetitive nature of the 5S rDNA gene (>100 copies/cell) inhibited more detailed analyses. However, given the known interactions between 5S rRNA and ribosomal protein L5 (previously called L1 or YL3) encoded by an essential, single-copy gene, we monitored the effects of a series of well-defined rpl5 mutants on PRF and virus propagation. Consistent with the mof9 results, we find that the rpl5 mutants promoted increased frameshifting efficiencies in both the -1 and +1 directions, and conferred defects in the ability of cells to propagate two endogenous viruses. Biochemical analyses demonstrated that mutant ribosomes had decreased affinities for peptidyl-tRNA. Pharmacological studies showed that sparsomycin, a peptidyltransferase inhibitor that specifically increases the binding of peptidyl-tRNA with ribosomes, was antagonistic to the frameshifting defects of the most severe mutant, and the extent of sparsomycin resistance correlated with the severity of the frameshifting defects in all of the mutants. These results provide biochemical and physiological evidence that one function of L5 is to anchor peptidyl-tRNA to the P-site. A model is presented describing how decreased affinity of ribosomes for peptidyl-tRNA can affect both -1 and +1 frameshifting, and for the effects of sparsomycin.
Full Text
The Full Text of this article is available as a PDF (1.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abraham A. K., Pihl A. Effect of protein synthesis inhibitors on the fidelity of translation in eukaryotic systems. Biochim Biophys Acta. 1983 Nov 17;741(2):197–203. doi: 10.1016/0167-4781(83)90059-3. [DOI] [PubMed] [Google Scholar]
- Balasundaram D., Dinman J. D., Tabor C. W., Tabor H. SPE1 and SPE2: two essential genes in the biosynthesis of polyamines that modulate +1 ribosomal frameshifting in Saccharomyces cerevisiae. J Bacteriol. 1994 Nov;176(22):7126–7128. doi: 10.1128/jb.176.22.7126-7128.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Balasundaram D., Dinman J. D., Wickner R. B., Tabor C. W., Tabor H. Spermidine deficiency increases +1 ribosomal frameshifting efficiency and inhibits Ty1 retrotransposition in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):172–176. doi: 10.1073/pnas.91.1.172. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Belcourt M. F., Farabaugh P. J. Ribosomal frameshifting in the yeast retrotransposon Ty: tRNAs induce slippage on a 7 nucleotide minimal site. Cell. 1990 Jul 27;62(2):339–352. doi: 10.1016/0092-8674(90)90371-K. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boeke J. D., Xu H., Fink G. R. A general method for the chromosomal amplification of genes in yeast. Science. 1988 Jan 15;239(4837):280–282. doi: 10.1126/science.2827308. [DOI] [PubMed] [Google Scholar]
- Brierley I., Digard P., Inglis S. C. Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot. Cell. 1989 May 19;57(4):537–547. doi: 10.1016/0092-8674(89)90124-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brierley I., Jenner A. J., Inglis S. C. Mutational analysis of the "slippery-sequence" component of a coronavirus ribosomal frameshifting signal. J Mol Biol. 1992 Sep 20;227(2):463–479. doi: 10.1016/0022-2836(92)90901-U. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brierley I. Ribosomal frameshifting viral RNAs. J Gen Virol. 1995 Aug;76(Pt 8):1885–1892. doi: 10.1099/0022-1317-76-8-1885. [DOI] [PubMed] [Google Scholar]
- Brierley I., Rolley N. J., Jenner A. J., Inglis S. C. Mutational analysis of the RNA pseudoknot component of a coronavirus ribosomal frameshifting signal. J Mol Biol. 1991 Aug 20;220(4):889–902. doi: 10.1016/0022-2836(91)90361-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brow D. A., Geiduschek E. P. Modulation of yeast 5 S rRNA synthesis in vitro by ribosomal protein YL3. A possible regulatory loop. J Biol Chem. 1987 Oct 15;262(29):13953–13958. [PubMed] [Google Scholar]
- Carrasco L., Barbacid M., Vazquez D. The trichodermin group of antibiotics, inhibitors of peptide bond formation by eukaryotic ribosomes. Biochim Biophys Acta. 1973 Jun 23;312(2):368–376. doi: 10.1016/0005-2787(73)90381-x. [DOI] [PubMed] [Google Scholar]
- Cui Y., Dinman J. D., Kinzy T. G., Peltz S. W. The Mof2/Sui1 protein is a general monitor of translational accuracy. Mol Cell Biol. 1998 Mar;18(3):1506–1516. doi: 10.1128/mcb.18.3.1506. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cui Y., Dinman J. D., Peltz S. W. Mof4-1 is an allele of the UPF1/IFS2 gene which affects both mRNA turnover and -1 ribosomal frameshifting efficiency. EMBO J. 1996 Oct 15;15(20):5726–5736. doi: 10.1002/j.1460-2075.1996.tb00956.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cui Y., González C. I., Kinzy T. G., Dinman J. D., Peltz S. W. Mutations in the MOF2/SUI1 gene affect both translation and nonsense-mediated mRNA decay. RNA. 1999 Jun;5(6):794–804. doi: 10.1017/s1355838299982055. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deshmukh M., Stark J., Yeh L. C., Lee J. C., Woolford J. L., Jr Multiple regions of yeast ribosomal protein L1 are important for its interaction with 5 S rRNA and assembly into ribosomes. J Biol Chem. 1995 Dec 15;270(50):30148–30156. doi: 10.1074/jbc.270.50.30148. [DOI] [PubMed] [Google Scholar]
- Deshmukh M., Tsay Y. F., Paulovich A. G., Woolford J. L., Jr Yeast ribosomal protein L1 is required for the stability of newly synthesized 5S rRNA and the assembly of 60S ribosomal subunits. Mol Cell Biol. 1993 May;13(5):2835–2845. doi: 10.1128/mcb.13.5.2835. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dinman J. D., Icho T., Wickner R. B. A -1 ribosomal frameshift in a double-stranded RNA virus of yeast forms a gag-pol fusion protein. Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):174–178. doi: 10.1073/pnas.88.1.174. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dinman J. D., Kinzy T. G. Translational misreading: mutations in translation elongation factor 1alpha differentially affect programmed ribosomal frameshifting and drug sensitivity. RNA. 1997 Aug;3(8):870–881. [PMC free article] [PubMed] [Google Scholar]
- Dinman J. D. Ribosomal frameshifting in yeast viruses. Yeast. 1995 Sep 30;11(12):1115–1127. doi: 10.1002/yea.320111202. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dinman J. D., Ruiz-Echevarria M. J., Czaplinski K., Peltz S. W. Peptidyl-transferase inhibitors have antiviral properties by altering programmed -1 ribosomal frameshifting efficiencies: development of model systems. Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6606–6611. doi: 10.1073/pnas.94.13.6606. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dinman J. D., Ruiz-Echevarria M. J., Peltz S. W. Translating old drugs into new treatments: ribosomal frameshifting as a target for antiviral agents. Trends Biotechnol. 1998 Apr;16(4):190–196. doi: 10.1016/S0167-7799(97)01167-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dinman J. D., Wickner R. B. 5 S rRNA is involved in fidelity of translational reading frame. Genetics. 1995 Sep;141(1):95–105. doi: 10.1093/genetics/141.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dinman J. D., Wickner R. B. Ribosomal frameshifting efficiency and gag/gag-pol ratio are critical for yeast M1 double-stranded RNA virus propagation. J Virol. 1992 Jun;66(6):3669–3676. doi: 10.1128/jvi.66.6.3669-3676.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dinman J. D., Wickner R. B. Translational maintenance of frame: mutants of Saccharomyces cerevisiae with altered -1 ribosomal frameshifting efficiencies. Genetics. 1994 Jan;136(1):75–86. doi: 10.1093/genetics/136.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dinman J., Ruiz-Echevarria M., Wang W., Peltz S. The case for the involvement of the Upf3p in programmed -1 ribosomal frameshifting. RNA. 2000 Dec;6(12):1685–1686. doi: 10.1017/s1355838200001886. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Farabaugh P. J. Programmed translational frameshifting. Microbiol Rev. 1996 Mar;60(1):103–134. doi: 10.1128/mr.60.1.103-134.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Farabaugh P. J., Vimaladithan A. Effect of frameshift-inducing mutants of elongation factor 1alpha on programmed +1 frameshifting in yeast. RNA. 1998 Jan;4(1):38–46. [PMC free article] [PubMed] [Google Scholar]
- Fried H. M., Fink G. R. Electron microscopic heteroduplex analysis of "killer" double-stranded RNA species from yeast. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4224–4228. doi: 10.1073/pnas.75.9.4224. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gesteland R. F., Atkins J. F. Recoding: dynamic reprogramming of translation. Annu Rev Biochem. 1996;65:741–768. doi: 10.1146/annurev.bi.65.070196.003521. [DOI] [PubMed] [Google Scholar]
- Haenni A. L., Chapeville F. The behaviour of acetylphenylalanyl soluble ribonucleic acid in polyphenylalanine synthesis. Biochim Biophys Acta. 1966 Jan 18;114(1):135–148. doi: 10.1016/0005-2787(66)90261-9. [DOI] [PubMed] [Google Scholar]
- Hammell A. B., Taylor R. C., Peltz S. W., Dinman J. D. Identification of putative programmed -1 ribosomal frameshift signals in large DNA databases. Genome Res. 1999 May;9(5):417–427. [PMC free article] [PubMed] [Google Scholar]
- Harris R., Pestka S. Studies on the formation of transfer ribonucleic acid-ribosome complexes. XXIV. Effects of antibiotics on binding of aminoacyl-oligonucleotides to ribosomes. J Biol Chem. 1973 Feb 25;248(4):1168–1174. [PubMed] [Google Scholar]
- Herner A. E., Goldberg I. H., Cohen L. B. Stabilization of N-acetylphenylalanyl transfer ribonucleic acid binding to ribosomes by sparsomycin. Biochemistry. 1969 Apr;8(4):1335–1344. doi: 10.1021/bi00832a006. [DOI] [PubMed] [Google Scholar]
- Hudak K. A., Dinman J. D., Tumer N. E. Pokeweed antiviral protein accesses ribosomes by binding to L3. J Biol Chem. 1999 Feb 5;274(6):3859–3864. doi: 10.1074/jbc.274.6.3859. [DOI] [PubMed] [Google Scholar]
- Hung M., Patel P., Davis S., Green S. R. Importance of ribosomal frameshifting for human immunodeficiency virus type 1 particle assembly and replication. J Virol. 1998 Jun;72(6):4819–4824. doi: 10.1128/jvi.72.6.4819-4824.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ito H., Fukuda Y., Murata K., Kimura A. Transformation of intact yeast cells treated with alkali cations. J Bacteriol. 1983 Jan;153(1):163–168. doi: 10.1128/jb.153.1.163-168.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacks T. Translational suppression in gene expression in retroviruses and retrotransposons. Curr Top Microbiol Immunol. 1990;157:93–124. doi: 10.1007/978-3-642-75218-6_4. [DOI] [PubMed] [Google Scholar]
- Lee S. I., Umen J. G., Varmus H. E. A genetic screen identifies cellular factors involved in retroviral -1 frameshifting. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6587–6591. doi: 10.1073/pnas.92.14.6587. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Merrick W. C. Assays for eukaryotic protein synthesis. Methods Enzymol. 1979;60:108–123. doi: 10.1016/s0076-6879(79)60011-3. [DOI] [PubMed] [Google Scholar]
- Morikawa S., Bishop D. H. Identification and analysis of the gag-pol ribosomal frameshift site of feline immunodeficiency virus. Virology. 1992 Feb;186(2):389–397. doi: 10.1016/0042-6822(92)90004-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nazar R. N. Higher order structure of the ribosomal 5 S RNA. J Biol Chem. 1991 Mar 5;266(7):4562–4567. [PubMed] [Google Scholar]
- Nazar R. N., Willick G. E., Matheson A. T. The 5 S RNA.protein complex from an extreme halophile, Halobacterium cutirubrum. Studies on the RNA-protein interaction. J Biol Chem. 1979 Mar 10;254(5):1506–1512. [PubMed] [Google Scholar]
- Oen H., Pellegrini M., Cantor C. R. Peptidyl transferase inhibitors alter the covalent reaction of BrAcPhe-tRNA with the E. coli ribosome. FEBS Lett. 1974 Sep 1;45(1):218–222. doi: 10.1016/0014-5793(74)80848-3. [DOI] [PubMed] [Google Scholar]
- Peltz S. W., Hammell A. B., Cui Y., Yasenchak J., Puljanowski L., Dinman J. D. Ribosomal protein L3 mutants alter translational fidelity and promote rapid loss of the yeast killer virus. Mol Cell Biol. 1999 Jan;19(1):384–391. doi: 10.1128/mcb.19.1.384. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pestka S., Hishizawa T., Lessard J. L. Studies on the formation of transfer ribonucleic acid-ribosome complexes. 8. Aminoacyl oligonucleotide binding to ribosomes: characteristics and requirements. J Biol Chem. 1970 Nov 25;245(22):6208–6219. [PubMed] [Google Scholar]
- Pestka S. The use of inhibitors in studies on protein synthesis. Methods Enzymol. 1974;30:261–282. doi: 10.1016/0076-6879(74)30030-4. [DOI] [PubMed] [Google Scholar]
- Ruiz-Echevarría M. J., Yasenchak J. M., Han X., Dinman J. D., Peltz S. W. The upf3 protein is a component of the surveillance complex that monitors both translation and mRNA turnover and affects viral propagation. Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8721–8726. doi: 10.1073/pnas.95.15.8721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tumer N. E., Parikh B. A., Li P., Dinman J. D. The pokeweed antiviral protein specifically inhibits Ty1-directed +1 ribosomal frameshifting and retrotransposition in Saccharomyces cerevisiae. J Virol. 1998 Feb;72(2):1036–1042. doi: 10.1128/jvi.72.2.1036-1042.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang W., Czaplinski K., Rao Y., Peltz S. W. The role of Upf proteins in modulating the translation read-through of nonsense-containing transcripts. EMBO J. 2001 Feb 15;20(4):880–890. doi: 10.1093/emboj/20.4.880. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wickner R. B., Leibowitz M. J. Two chromosomal genes required for killing expression in killer strains of Saccharomyces cerevisiae. Genetics. 1976 Mar 25;82(3):429–442. doi: 10.1093/genetics/82.3.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yeh L. C., Deshmukh M., Woolford J. L., Lee J. C. Involvement of lysine 270 and lysine 271 of yeast 5S rRNA binding protein in RNA binding and ribosome assembly. Biochim Biophys Acta. 1996 Aug 14;1308(2):133–141. doi: 10.1016/0167-4781(96)00085-1. [DOI] [PubMed] [Google Scholar]
- Yusupov M. M., Yusupova G. Z., Baucom A., Lieberman K., Earnest T. N., Cate J. H., Noller H. F. Crystal structure of the ribosome at 5.5 A resolution. Science. 2001 Mar 29;292(5518):883–896. doi: 10.1126/science.1060089. [DOI] [PubMed] [Google Scholar]