Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1976 Oct;262(1):151–168. doi: 10.1113/jphysiol.1976.sp011590

Methionine transport by pig colonic mucosa measured during early post-natal development.

P S James, M W Smith
PMCID: PMC1307635  PMID: 994036

Abstract

New-born pig proximal colon, incubated in vitro, transports methionine with a Km of 0-33 mM and a Vmax of 0-62 mumole cm-2h-1. There is still a net transport of methionine on day 4, but the Km now increases to 10 mM and the Vmax falls to 0-15 mumole cm-2h-1. There is no net transport of methionine across proximal colons taken from 10-day-old pigs. 2. The mean intramucosal concentration of methionine, following incubation in medium containing 1 mM methionine, is 7-18+/-0-8 mM for the new-born, 0-55+/-0-05 mM for the 4-day-old and 0-31+/-0-06 mM for the 10-day-old pig. 3. Both methionine and glucose cause an immediate increase in the short-circuit current of new-born and 1-day-old pig colons. The kinetics for this interaction with methionine gives a Km for methionine of 0-24 mM and a maximum effect of 27 muA cm-2. This effect is not seen in 4- or 10-day-old pigs. 4. Net Na+ transport across the new-born pig proximal colon, measured in the absence of methionine, is about three times that calculated from the measured short-circuit current. Methionine increases the mucosal to serosal flux of Na+ by an amount roughly equal to that predicted from the increase in short-circuit current. The ability of glucose and methionine to affect short-circuit current is lost by day 4. 5. Short-circuit current, measured in the absence of methionine or glucose, increases between day 1 and 2 of post-natal life. This increased electrogenicity is maintained for up to at least 10 days after birth. 6. The pig proximal colon has many of the properties of a small intestine at birth. It actively transports methionine and the presence of methionine stimulates the absorption of Na+. These effects could be physiologically important in the pig, where the normal absorptive function of the intestine is temporarily inhibited at birth by the intestinal transmission of immune globulins.

Full text

PDF
151

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BAILLIEN M., SCHOFFENIELS E. [Active transport of amino acids in the isolated intestinal epithelium of the Greek tortoise]. Biochim Biophys Acta. 1961 Nov 11;53:521–536. doi: 10.1016/0006-3002(61)90212-8. [DOI] [PubMed] [Google Scholar]
  2. Batt E. R., Schachter D. Developmental pattern of some intestinal transport mechanisms in newborns rats and mice. Am J Physiol. 1969 May;216(5):1064–1068. doi: 10.1152/ajplegacy.1969.216.5.1064. [DOI] [PubMed] [Google Scholar]
  3. Bentley P. J., Smith M. W. Transport of electrolytes across the helicoidal colon of the new-born pig. J Physiol. 1975 Jul;249(1):103–117. doi: 10.1113/jphysiol.1975.sp011005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Binder H. J. Amino acid absorption in the mammalian colon. Biochim Biophys Acta. 1970 Dec 1;219(2):503–506. doi: 10.1016/0005-2736(70)90233-6. [DOI] [PubMed] [Google Scholar]
  5. CHRISTENSEN H. N., FELDMAN B. H., HASTINGS A. B. CONCENTRATIVE AND REVERSIBLE CHARACTER OF INTESTINAL AMINO ACID TRANSPORT. Am J Physiol. 1963 Aug;205:255–260. doi: 10.1152/ajplegacy.1963.205.2.255. [DOI] [PubMed] [Google Scholar]
  6. CORDERO N., WILSON T. H. Comparison of transport capacity of small and large intestine. Gastroenterology. 1961 Nov;41:500–504. [PubMed] [Google Scholar]
  7. Evered D. F., Nunn P. B. Uptake of amino acids by mucosa of rat colon in vitro. Eur J Biochem. 1968 Apr;4(3):301–304. doi: 10.1111/j.1432-1033.1968.tb00208.x. [DOI] [PubMed] [Google Scholar]
  8. Grenier J. F., Sava G., Gillet M. Les résections étendues de l'intestin grêle. Etude physio-pathologique. Ann Chir. 1970 May;24(9):537–544. [PubMed] [Google Scholar]
  9. Holdsworth C. D., Wilson T. H. Development of active sugar and amino acid transport in the yolk sac and intestine of the chicken. Am J Physiol. 1967 Feb;212(2):233–240. doi: 10.1152/ajplegacy.1967.212.2.233. [DOI] [PubMed] [Google Scholar]
  10. Hollender L. F., Sava G. Etude clinique des résections étendues de l'intestin grêle. Ann Chir. 1970 May;24(9):529–535. [PubMed] [Google Scholar]
  11. Hénin S., Smith M. W. Electrical properties of pig colonic mucosa measured during early post-natal development. J Physiol. 1976 Oct;262(1):169–187. doi: 10.1113/jphysiol.1976.sp011591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. James P. S., Smith M. W., Wooding F. B. Proceedings: Time-dependent changes in methionine transport across the helicoidal colon of the new-born pig. J Physiol. 1976 May;257(1):38P–39P. [PubMed] [Google Scholar]
  13. Lerner J., Sattelmeyer P., Rush R. Kinetics of methionine influx into various regions of chicken intestine. Comp Biochem Physiol A Comp Physiol. 1975 Jan 1;50(1A):113–120. doi: 10.1016/s0010-406x(75)80211-8. [DOI] [PubMed] [Google Scholar]
  14. Masesa P. C. Proceedings: Changes in the rat small intestine after subtotal colectomy. J Physiol. 1976 Mar;256(1):47P–48P. [PubMed] [Google Scholar]
  15. NATHANS D., TAPLEY D. F., ROSS J. E. Intestinal transport of amino acids studies in vitro with L-[1311] monoiodotyrosine. Biochim Biophys Acta. 1960 Jul 1;41:271–282. doi: 10.1016/0006-3002(60)90010-x. [DOI] [PubMed] [Google Scholar]
  16. Robinson J. W., Luisier A. L., Mirkovitch V. Transport of amino-acids and sugars by the dog colonic mucosa. Pflugers Arch. 1973;345(4):317–326. doi: 10.1007/BF00585850. [DOI] [PubMed] [Google Scholar]
  17. SCHULTZ S. G., ZALUSKY R. ION TRANSPORT IN ISOLATED RABBIT ILEUM. II. THE INTERACTION BETWEEN ACTIVE SODIUM AND ACTIVE SUGAR TRANSPORT. J Gen Physiol. 1964 Jul;47:1043–1059. doi: 10.1085/jgp.47.6.1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Smith M. W., James P. S. Amino acid transport by the helicoidal colon of the new-born pig. Biochim Biophys Acta. 1976 Jan 21;419(2):391–394. doi: 10.1016/0005-2736(76)90366-7. [DOI] [PubMed] [Google Scholar]
  19. Wright H. K., Cleveland J. C., Tilson M. D., Herskovic T. Morphology and absorptive capacity of the ileum after ileostomy in man. Am J Surg. 1969 Feb;117(2):242–245. doi: 10.1016/0002-9610(69)90310-9. [DOI] [PubMed] [Google Scholar]
  20. Wright H. K., Poskitt T., Cleveland J. C., Herskovic T. The effect of total colectomy on morphology and absorptive capacity of ileum in the rat. J Surg Res. 1969 May;9(5):301–304. doi: 10.1016/0022-4804(69)90070-5. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES