Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1976 Nov;262(2):415–430. doi: 10.1113/jphysiol.1976.sp011602

The effect of local changes in potassium and bicarbonate concentration on hypothalamic blood flow in the rabbit.

I R Cameron, J Caronna
PMCID: PMC1307650  PMID: 11341

Abstract

Blood flow has been measured locally in the hypothalamus of anaesthetized rabbits by measuring the clearance of small volumes (5-20 mul.) of a mock cerebrospinal fluid solution containing 133Xe. The effect of varying the [K+] or [HCO-3] of the 133Xe-containing solution on local hypothalamic blood flow has been investigated. 2. There was an increase in local hypothalamic blood flow if the 133Xe-containing solution was HCO3--free; raising the [HCO--3,] of the solution to 40 mM caused a fall in local blood flow. 3. There was an increase in local hypothalamic blood flow when 133Xe was injectedin a mock cerebrospinal fluid containing 10 or 20 mM-[K+]. There was no significant change in blood flow if a K+-free or a 40 mM [K+] solution was used. 4. The decrease in hypothalamic blood flow caused by injecting a 40 mM-[HCO3] solution could be reversed by the addition of 20 mM [K+] to the solution. There was no further increase in blood flow if 20 mM-[K+] was added to a HCO3--free solution. 5. It is concluded that local blood flow in the hypothalamus changes as a result of variation in local [K+] as well as local [HCO-3]. The changes in blood flow in the brain which accompany neuronal activity could be mediated by variation in local [K+].

Full text

PDF
415

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baylor D. A., Nicholls J. G. Changes in extracellular potassium concentration produced by neuronal activity in the central nervous system of the leech. J Physiol. 1969 Aug;203(3):555–569. doi: 10.1113/jphysiol.1969.sp008879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Betz E., Heuser D. Cerebral cortical blood flow during changes of acid-base equilibrium of the brain. J Appl Physiol. 1967 Nov;23(5):726–733. doi: 10.1152/jappl.1967.23.5.726. [DOI] [PubMed] [Google Scholar]
  3. CROSS B. A., SILVER I. A. Some factors affecting oxygen tension in the brain and other organs. Proc R Soc Lond B Biol Sci. 1962 Nov 20;156:483–499. doi: 10.1098/rspb.1962.0051. [DOI] [PubMed] [Google Scholar]
  4. Cranston W. I., Rosendorff C. Local blood flow, cerebrovascular autoregulation and CO2 responsiveness in the rabbit hypothalamus. J Physiol. 1971 Jul;215(3):577–590. doi: 10.1113/jphysiol.1971.sp009486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fencl V., Vale J. R., Broch J. A. Respiration and cerebral blood flow in metabolic acidosis and alkalosis in humans. J Appl Physiol. 1969 Jul;27(1):67–76. doi: 10.1152/jappl.1969.27.1.67. [DOI] [PubMed] [Google Scholar]
  6. Goldman H., Sapirstein L. A. Brain blood flow in the conscious and anesthetized rat. Am J Physiol. 1973 Jan;224(1):122–126. doi: 10.1152/ajplegacy.1973.224.1.122. [DOI] [PubMed] [Google Scholar]
  7. HARPER A. M., BELL R. A. THE EFFECT OF METABOLIC ACIDOSIS AND ALKALOSIS ON THE BLOOD FLOW THROUGH THE CEREBRAL CORTEX. J Neurol Neurosurg Psychiatry. 1963 Aug;26:341–344. doi: 10.1136/jnnp.26.4.341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Harper A. M., Glass H. I. Effect of alterations in the arterial carbon dioxide tension on the blood flow through the cerebral cortex at normal and low arterial blood pressures. J Neurol Neurosurg Psychiatry. 1965 Oct;28(5):449–452. doi: 10.1136/jnnp.28.5.449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ingvar D. H., Risberg J. Increase of regional cerebral blood flow during mental effort in normals and in patients with focal brain disorders. Exp Brain Res. 1967;3(3):195–211. doi: 10.1007/BF00235584. [DOI] [PubMed] [Google Scholar]
  10. KJELLMER I. THE POTASSIUM ION AS A VASODILATOR DURING MUSCULAR EXERCISE. Acta Physiol Scand. 1965 Apr;63:460–468. doi: 10.1111/j.1748-1716.1965.tb04089.x. [DOI] [PubMed] [Google Scholar]
  11. Kuschinsky W., Wahl M., Bosse O., Thurau K. Perivascular potassium and pH as determinants of local pial arterial diameter in cats. A microapplication study. Circ Res. 1972 Aug;31(2):240–247. doi: 10.1161/01.res.31.2.240. [DOI] [PubMed] [Google Scholar]
  12. Lassen N. A. Brain extracellular pH: the main factor controlling cerebral blood flow. Scand J Clin Lab Invest. 1968 Dec;22(4):247–251. doi: 10.3109/00365516809167060. [DOI] [PubMed] [Google Scholar]
  13. Pannier J. L., Weyne J., Demeester G., Leusen I. Influence of changes in the acid-base composition of the ventricular system on cerebral blood flow in cats. Pflugers Arch. 1972;333(4):337–351. doi: 10.1007/BF00586213. [DOI] [PubMed] [Google Scholar]
  14. Plum F., Posner J. B., Troy B. Cerebral metabolic and circulatory responses to induced convulsions in animals. Arch Neurol. 1968 Jan;18(1):1–13. doi: 10.1001/archneur.1968.00470310015001. [DOI] [PubMed] [Google Scholar]
  15. Prince D. A., Lux H. D., Neher E. Measurement of extracellular potassium activity in cat cortex. Brain Res. 1973 Feb 28;50(2):489–495. doi: 10.1016/0006-8993(73)90758-0. [DOI] [PubMed] [Google Scholar]
  16. Reivich M., Jehle J., Sokoloff L., Kety S. S. Measurement of regional cerebral blood flow with antipyrine-14C in awake cats. J Appl Physiol. 1969 Aug;27(2):296–300. doi: 10.1152/jappl.1969.27.2.296. [DOI] [PubMed] [Google Scholar]
  17. Rosendorff C., Luff R. H. An indirect method for determination of tissue: blood partition coefficient for xenon 133. J Appl Physiol. 1970 Nov;29(5):713–716. doi: 10.1152/jappl.1970.29.5.713. [DOI] [PubMed] [Google Scholar]
  18. Siesjö B. K., Kjällquist A., Pontén U., Zwetnow N. Extracellular pH in the brain and cerebral blood flow. Prog Brain Res. 1968;30:93–98. doi: 10.1016/S0079-6123(08)61444-2. [DOI] [PubMed] [Google Scholar]
  19. Stromberg D. D., Fox J. R. Pressures in the pial arterial microcirculation of the cat during changes in systemic arterial blood pressure. Circ Res. 1972 Aug;31(2):229–239. doi: 10.1161/01.res.31.2.229. [DOI] [PubMed] [Google Scholar]
  20. Wahl M., Deetjen P., Thurau K., Ingvar D. H., Lassen N. A. Micropuncture evaluation of the importance of perivascular pH for the arteriolar diameter on the brain surface. Pflugers Arch. 1970;316(2):152–163. doi: 10.1007/BF00586483. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES